期刊文献+

基于蚁群优化的极限学习机选择性集成学习算法 被引量:6

Selective Ensemble Learning Algorithm of Extreme Learning Machine Based on Ant Colony Optimization
下载PDF
导出
摘要 针对现有极限学习机集成学习算法分类精度低、泛化能力差等缺点,提出了一种基于蚁群优化思想的极限学习机选择性集成学习算法。该算法首先通过随机分配隐层输入权重和偏置的方法生成大量差异的极限学习机分类器,然后利用一个二叉蚁群优化搜索算法迭代地搜寻最优分类器组合,最终使用该组合分类测试样本。通过12个标准数据集对该算法进行了测试,该算法在9个数据集上获得了最优结果,在另3个数据集上获得了次优结果。采用该算法可显著提高分类精度与泛化性能。 This paper proposed a novel selective ensemble learning algorithm of extreme learning machine (ELM) based on the idea of ant colony optimizatiorL The algorithm can overcome the drawbacks of the existing ensemble learning al- gorithms of ELM, such as low classification accuracy and generalization ability. Firstly, the proposed algorithm gene- rates lots of ELM classifiers by the strategy of randomly assigning input weights and biases of the hidden layer. It then uses a binary ant colony optimization algorithm to search the optimal combination of ELMs. At last, it uses the extracted combination of classifiers to classify test instances. The experimental results on 12 baseline data sets show that the pro- posed algorithm has acquired the best performance on nine data sets and the second best performance on the three re- maining data sets. Adopting the proposed algorithm can obviously help to improve the classification accuracy and gene- ralization ability.
作者 杨菊 袁玉龙 于化龙 YANG Ju YUAN Yu-long YU Hua-long(School of Computer Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
出处 《计算机科学》 CSCD 北大核心 2016年第10期266-271,共6页 Computer Science
基金 国家自然科学基金(61305058) 江苏省自然科学基金(BK20130471) 中国博士后特别资助计划项目(2015T80481) 中国博士后科学基金(2013M540404) 江苏省博士后基金(1401037B) 江苏省2015年普通高校研究生实践创新计划项目(1132161503)资助
关键词 极限学习机 蚁群优化 集成学习 选择性集成 Extreme learning machine, Ant colony optimization, Ensemble learning,Selective ensemble
  • 相关文献

参考文献4

二级参考文献65

  • 1Golub,T.R.,et al.1999.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring.Science 286:531-537.
  • 2Alon,U.,et al.1999.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.Proc.Natl.Acad.Sci.USA 96:6745-6750.
  • 3Dougherty,E.R.2001.Small sample issues for microarray-based classification.Comp.Funct.Genomics 2:28-34.
  • 4Xing,E.P.,et al.2001.Feature selection for highdimensional genomic microarray data.In Proceedings of the 18th International Conference on Machine Learning,pp.601-608.Morgan Kaufmann Publishers Inc.,San Francisco,USA.
  • 5Roth,F.P.2001.Bringing out the best features of expression data.Genome Res.11:1801-1802.
  • 6Guyon,I.,et al.2002.Gene selection for cancer classification using support vector machines.Mach.Learn.46:389-422.
  • 7Inza,I.,et al.2004.Filter versus wrapper gene selection approaches in DNA microarray domains.Artif.Intell.Med.31:91-103.
  • 8Liu,H.,et al.2002.A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns.Genome Inform.13:51-60.
  • 9Su,Y.,et al.2003.RankGene:identification of diagnostic genes based on expression data.Bioinformatics 19:1578-1579.
  • 10Li,T.,et al.2004.A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression.Bioinformatics 20:2429-2437.

共引文献69

同被引文献72

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部