期刊文献+

基于非负张量分解的人脸识别算法研究 被引量:7

Research of Face Recognition Algorithm Based on Nonnegative Tensor Factorization
下载PDF
导出
摘要 人脸识别是生物特征识别中一个活跃的研究领域。非负张量分解作为非负矩阵分解的多线性推广,已被成功应用到人脸识别等领域。提出了基于非负张量分解的人脸识别算法。该方法无需将人脸矩阵向量化,从而保持了人脸矩阵的内部结构,即人脸图像的整体结构,使人脸特征提取更精确。实验结果表明,与经典的人脸识别算法如PCA和NMF相比,该算法提供了一种更好的脸部表示模式,提高了人脸识别的正确率。 Face recognition is an active research area of biometrie identification. Nonnegative tensor factorization is the multiple linear extension of nonnegative matrix factorization, which has been successfully applied to face recognition and other fields. A face recognition algorithm based on nonnegative tensor factorization was proposed. This method need not transform a face matrix into a vector, thereby maintaining the ning the overall structure of the facial images and making the internal structure of the human face matrix, thus maintai- extraction of facial feature more accurate. The experimen- tal results show that, compared with the classical face recognition algorithms such as PCA and NMF, the face recogni- tion algorithm based on nonnegative matrix factorization provides better representation of face patterns and improves the accurate rate of face recognition.
作者 梁秋霞 何光辉 陈如丽 楚建浦 LIANG Qiu-xia HE Guang-hui CHEN Ru-li CHU Jian-pu(College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China)
出处 《计算机科学》 CSCD 北大核心 2016年第10期312-316,共5页 Computer Science
基金 国家自然科学基金项目:图像运动模糊不变量特征学习(61572087)资助
关键词 人脸识别 非负矩阵分解 非负张量分解 Face recognition,Nonnegative matrix factorization, Nonnegative tensor factorization
  • 相关文献

参考文献1

二级参考文献13

  • 1LEE D D, SEUNG H S. learning the parts of objects by non-nega- tive matrix factorization[ J]. Nature, 1999, 401(6755) : 788 - 791.
  • 2CAI D, HE X F, HAN J W. Graph regularized non-negative matrix factorization for data representation[ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2011, 33(8) : 1548 - 1560.
  • 3OUHSAIN M, HAMZA B A. Image watermarking scheme using nonnegative matrix factofization and wavelet transform[ J]. Expert Systems with Applications, 2009, 36(2): 2123 -2129.
  • 4WELLING M, WEBER M. Positive tensor factorization[ J]. Pattern Recognition Letters, 2001, 22(12) : 1255 - 1261.
  • 5LIU J, LIU J, WONKA P, et al. Sparse non-negative tensor factori- zation using columnwise coordinate descent [ J]. Pattern Recogni- tion, 2012, 45(1) : 649 -656.
  • 6CONG F Y, PHAN A H, ASTIKAINEN P. Multi-domain feature of event-related potential extracted by nonnegative tensor factorization: 5 vs. 14 electrodes EEG data[ C]//Proceedings of the 10th Interna- tional Conference on Latent Variable Analysis and Signal Separation. Berlin: Springer-Verlag, 2012:502-510.
  • 7HOYER P O. Nonnegative matrix factorization with sparseness con- straints[J]. Journal of Machine Learning Research, 2004, 5(12): 1457 - 1469.
  • 8CICHOCKI A, ZDUNEK R, AMARI S. Csiszar's divergences for nonnegative matrix factorization family of new algorithms[ C]//Pro- ceedings of the 6th International Conference on Independent Compo- nent Analysis and Blind Signal Separation, LNCS 3889. Berlin: Springer-Verlag, 2006:32 - 39.
  • 9MURAKAMI T, KROONENBERG P M. Three-mode models and in- dividual differences in semantic differential data[ J]. Multivariate Behavioral Research, 2003, 38(2):247-283.
  • 10LATHAUWER L D. Signal processing based on multilinear algebra [D]. Katholieke, Belgium: University of Leuven, 1997.

共引文献4

同被引文献47

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部