期刊文献+

基于给定实体和属性的相似实体推荐方法

Similar Entity Recommendation Method Based on Given Entity and Attribute
下载PDF
导出
摘要 一个实体有时会属于多个不同的概念,同时也会属于不同粒度的相似概念。提出一种对于给定实体和属性集情况下实体概念化的方法,通过建立概念的属性模板并计算不同属性对于一个概念的典型性来推断实体与不同属性结合时的概念。给出融合4个方面特征的基于贝叶斯的相似候选实体排序模型。实验结果表明,该方法能够有效地提高相似实体的推荐效果。 An entity may belong to several different concepts. At the same time,it may belong to some varigrained similar concepts. This paper proposes a method that handles the entity conceptualization based on the given entities and attribute sets. By establishing concept' s attribute template and the typicalness of attributes in the concept, this method deduces an entity' s concept when combined with different attributes. It also proposes a Bayesian similar candidate entity ranking model which takes four characteristics into consideration. Experimental results demonstrate that the proposed method can effectively improve the similar entity recommendation effect.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第10期181-186,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61472085) 上海科技创新行动计划基础研究基金资助项目(15JC1400900) 上海科技启明星计划基金资助项目(13dz226200)
关键词 实体概念化 条件概率 实体相似性 属性分析 链接 实体排序 entity conceptualization conditional probability entity similarity attribute analysis link entity ranking
  • 相关文献

参考文献15

  • 1Yao Limin,Mimno D, McCallum A. Efficient Methods for Topic Model Inference on Streaming Document Collec- tions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press ,2009:937-946.
  • 2Song Yangqiu, Wang Haixun, Wang Zhongyuan, et al. Short Text Conceptualization Using a Probabilistic Knowledgebase [ C ]//Proceedings of the 22nd Inter- national Joint Conference on Artificial Intelligence. Barcelona, Spain : AAAI Press ,2011:2330-2336.
  • 3Lee T,Wang Z, Wang H, et al. Attribute Extraction and Scoring :A Probabilistic Approach [ C ]//Proceedings of IEEE International Conference on Data Engineering. Washington D. C., USA : IEEE Press, 2013 : 194-205.
  • 4Wu Wentao, Li Hongsong, Wang Haixun, et al. Probase : A Probabilistic Taxonomy for Text Understanding [ C ]// Proceedings of International Conference on Management of Data. New York, USA : ACM Press,2012:481-492.
  • 5邓擘,樊孝忠,杨立公.用语义模式提取实体关系的方法[J].计算机工程,2007,33(10):212-214. 被引量:23
  • 6Pehcevski J,Thom J A, Vercoustre A M, et al. Entity Ranking in Wikipedia: Utilising Categories, Links and Topic Difficulty Prediction [ J ]. Information Retrieval, 2010:13(5) :568-600.
  • 7The Google Search Engine: Commercial Search Engine Founded by the Originators of PageRank [ EB/OL ]. (2003-01-21). http ://www. google, com.
  • 8Bron M,Balog K,Rijke M. Ranking Related Entities:Com- ponents and Analysis [ C ]//Proceedings of Conference on Information and Knowledge Management. New York, USA:ACM Press ,2010 : 1079-1088.
  • 9张俊三,瞿有利,税仪冬,田盛丰.相关实体发现中基于Wikipedia的实体排序[J].计算机研究与发展,2014,51(6):1359-1372. 被引量:1
  • 10Kaptein R, Koolen M, Kamps J. Result Diversity and Entity Ranking Experiments: Anchors, Links, Text and Wikipedia[ C ]//Proceedings of the 18th Text Retrieval Conference. Washington D. C., USA : IEEE Press, 2009 : 212-220.

二级参考文献4

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部