期刊文献+

采用群体信息的二部图链接预测方法 被引量:1

Bipartite Graph Link Prediction Method Using Community Information
下载PDF
导出
摘要 二部图包含2种不同类型的节点且链接只存在于不同类型的节点之间,因此,许多适用于普通单部图的链接预测方法无法直接用于二部图中。另外,群体信息对提高链接预测的准确率有重要意义,但缺乏相关研究。为此,提出一种采用群体信息的二部图链接预测方法。将链接预测视为机器学习的分类问题,通过对二部图投影,抽取二部图中节点对样本的局部结构属性,并运用群体检测技术抽取节点对样本的群体属性,并把局部结构属性和群体属性一起作为节点对相似度的度量标准,在监督学习框架中进行训练和预测。在现实数据集Movie Lens中的实验结果表明,群体信息的引入能有效提高二部图链接预测方法的准确率,改善推荐性能。 Since bipartite graph contains two different types of nodes and links only exist between different types of nodes, most link prediction methods for common single graph cannot be applied to bipartite graphs directly. In addition, the community information does not draw enough attention though it is important to improve the accuracy of link prediction. So a bipartite link prediction method using community information is developed. The method regards link prediction as a classification problem in machine learning. The local structural properties of node pair instances in a bipartite graph are extracted by the projection of the bipartite graph, together with community properties of instances by exploiting community detection techniques. Then local structural properties and community properties are used as similarity measurements of node pair instances. Training and prediction are conducted in a supervised learning process. Experimental results in a real dataset MovieLens show that the use of community information improves the link prediction accuracy and recommendation performance.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第10期187-191,共5页 Computer Engineering
基金 国家自然科学基金青年基金资助项目(61100135)
关键词 二部图 链接预测 监督学习 群体检测 推荐系统 bipartite graph link prediction supervised learning community detection recommendation system
  • 相关文献

参考文献21

  • 1Liben N D, Kleinberg J. The Link Prediction Problem for Social Networks [J ]. Science Technology, 2007, 58(7) :1019-1031.
  • 2陈可佳,韩京宇,郑正中,张海进.主动学习在通信网络推荐系统中的应用[J].计算机应用,2012,32(11):3038-3041. 被引量:2
  • 3Kunegis J, Luca E W D, Albayrak S. The Link Prediction Problem in Bipartite Networks [ C ]// Proceedings of the 13th International Conference on Information Processing and Management of Uncertainty. Berlin, Germany : Springer, 2010 : 380-389.
  • 4Rendle S, Schmidt T L. Online-updating Regularized Kernel Matrixfactorization Models for Large-scale Recom- mender Systems[C]//Proceedings of ACM Conference on Recommender Systems. New York ,USA: ACM Press ,2008 : 251-258.
  • 5Almosallam I A,Shang Yi. A New Adaptive Framework for Collaborative Filtering Prediction [ C ]//Proceedings of IEEE Congress on Evolutionary Computation. Washington D. C., USA : IEEE Press ,2008:2725 - 2733.
  • 6Hasan M A, Chaoji V, Salem S, et al. Link Prediction Using Supervised Learning [ C ]//Proceedings of SDM Workshop on Link Analysis Counterterrorism and Security. Berlin, Germany : Springer,2006:344-360.
  • 7Benchettara N, Kanawati R, Rouveirol C. Supervised Machine Learning Applied to Link Prediction in Bipartite Social Networks [ C ]//Proceedings of International Con- ference on Advances in Social Networks Analysis and Mining. Washington D. C., USA: IEEE Press, 2010: 326-330.
  • 8Chang Yangjui,Kao Hongyu. Link Prediction in a Bipartite Network Using Wikipedia Revision Information[ C]//Pro- ceedings of Conference on Technologies and Applications of Artificial Intelligence. Washington D. C., USA: IEEE Press ,2012:50-55.
  • 9Yajima Y. One-class Support Vector Machines for Recommendation Tasks [ C ]//Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin, Germany : Springer, 2006:230-239.
  • 10Li Xin, Chen Hsin-chun. Recommendation as Link Prediction in Bipartite Graphs: A Graph Kernel-based Machine Learning Approach [ J ]. Decision Support Systems ,2009,54 ( 2 ) :213-216.

二级参考文献15

  • 1GETOOR L, DIEHL C P. Link mining: A survey[ J]. ACM SIGKDD Explorations Newsletter, 2005, 7(2): 3 -12.
  • 2LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[ J]. Journal of the American Society for Information Science and Technology, 2007, 58(7) : 1019 - 1031.
  • 3LICHTENWALTER R N, LUSSIER J T, CHAWLA N V. New perspectives and methods in link prediction[ C]// KDD' 10: Proceedings of the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010:243 -252.
  • 4COHN D, ATLAS L, LADNER R. Improving generalization with active learning[J]. Machine Learning, 1994, 15(2): 201-221.
  • 5HASAN M A, CHAOJI V, SALEM S, et al. Link prediction using supervised learning[ EB/OL]. [ 2012 - 03 - 18]. http://www, siam. org/meetings/sdm06/workproceed/Link% 20Analysis/12. pdf/.
  • 6SETYLES B. Active learning literature survey, Computer Sciences Technical Report 1648[ R]. Madison, Wisconsin, USA: University of Wisconsin-Madison, 2009.
  • 7BILGIC M, GETOOR L. Link-based active learning[ EB/OL]. [2012 -03 -15]. http://snap. stanford. edu/nipsgraphs2009/papers/bilgic-paper. pdf.
  • 8BILGIC M, MIHAKOVA L, GETOOR L. Active learning for networked data[ C]//ICML' 10: Proceedings of the 27th International Conference of Machine Learning. Haifa, Israel: Omnipress, 2010: 79 - 86.
  • 9LEWIS D D, CATLETT J. Heterogeneous uncertainty sampling for supervised learning[ C]//ICML' 94: Proceedings of the 11 th International Conference of Machine Learning. New Brunswick: OmniPress, 1994:148-156.
  • 10NEWMAN M E J. The structure and function of complex networks [J]. SIAM Review, 2003, 45(2) : 167 -256.

共引文献1

同被引文献18

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部