期刊文献+

核主成分分析网络的人脸识别方法 被引量:7

Kernel principal component analysis network method for face recognition
下载PDF
导出
摘要 主成分分析网络(principal component analysis network,PCANet)是当前流行深度学习模型,在人脸识别、目标识别、纹理分类和手写体数字识别等方面有广泛应用。在PCANet方法基础上,该文提出基于核主成分分析网络(kernel principal component analysis network,KPCANet)的人脸识别方法。算法由四部分组成:主成分分析(PCA)、核主成分分析(KPCA)、二值化哈希、分块直方图。在Extended Yale B和AR两个经典人脸库上的实验结果表明,所提方法在识别性能上优于PCANet方法 ,算法对于不同光照、表情变化下的人脸有更好的识别率和鲁棒性。 Principal component analysis network (PCANet) is a popular deep learning classification method, which has caused wide attention in the area of computer vision due to its practical applications in face recognition, hand-written digit recognition, texture classification, and object recognitions. On the basis of PCANet. The kernel principal component analysis network (KPCANet) method is proposed for face recognition. The model is constructed by four processing components, including principal component analysis (PCA), kernel principal component analysis (KPCA), binary hashing, and block-wise histograms. The performance of the proposed method is evaluated using two public face datasets, i. e. , Extended Yale B database and AR face database. The results show that KPCANet outperforms PCANet method. Especially when the face images have large variations about illuminations and expressions, KPCANet gives better recognition results.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期48-51,56,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60802069 61273270) 广东省自然科学基金资助项目(2014A030313173)
关键词 核主成分分析网络 深度学习 人脸识别 核变换 kernel principal component analysis network deep learning face recognition kernel transformation
  • 相关文献

参考文献13

  • 1TURK M, PENTLAND A. Face recognitison using eigen- faces [ C] //IEEE Conference on Computer Vision and Pattern Recognition, 1991: 586- 590.
  • 2FISHER R. The use of multiple measurements in taxo- nomic problems [J]. Annals of Eugenics, 1936, 7(2): 179 - 188.
  • 3左军,周灵,孙亚民.基于RBF神经网络PCA变换的识别技术[J].中山大学学报(自然科学版),2014,53(6):135-139. 被引量:3
  • 4LEE H, GROSSE R. Convolutional deep belief networks for scalable unsupervised learning of hierarchical represen- tations [ C ] //// International Conference on Machine Learning, 2009:609 - 616.
  • 5CHRISTIAN S, TOSHEV A, ERHAN D. Deep neural networks for object detection [ C ]/z/z Advances in Neural Information Processing Systems, 2013, 2553- 2561.
  • 6CHRISTIAN S, LIU W, JIA Y Q. Going deeper with con- volutions [ C ]////IEEE Conference on Computer Vision and Pattern Recognition, 2015 : 1 -9.
  • 7CHAN T H, JIA K, GAO S H, et al. Pcanet: A simple deep learning baseline for image classification [ J ]. TIP, 2015, 24(12) :5017 - 5032.
  • 8BRUNA J, MALLAT S. Invariant scattering convolution net-works [J]. TPAMI, 2013, 35(8):1872-1886.
  • 9SIFRE L, MALLAT S. Rotation, scaling and deformation invariant scattering for texture discrimination [ J ]. CVPR, 2013, 9(4) :1233 - 1240.
  • 10HOFMANN T, SCHOLKOPF B, ALEXANDER J S. Kernel methods in machine learning [ J ]. Annals of Statistics, 2008, 36 (3) : 1171 - 1220.

二级参考文献48

  • 1骞森,朱剑英.基于奇异值分解的图像质量评价[J].东南大学学报(自然科学版),2006,36(4):643-646. 被引量:20
  • 2高新波,路文.视觉信息质量评价方法[M].西安:西安电子科技大学出版社,2011.
  • 3谢勍,谢建全.一种基于奇异值分解的改进图像水印算法[J].计算机工程与科学,2007,29(11):40-42. 被引量:9
  • 4AWRANGJEB M. An overview of reversible data hiding [ C ]. Proc of ICCIT - 2003, Bangladesh,2003.
  • 5LINE T, DELP E J. Temporal synchronization in video watermarking[ J ]. IEEE Trans Signal Process,2004, 52 (10) : 3007 - 3022.
  • 6DAZHI Z, BOYING W, JIEBAO S, et al. A new robust watermarking algorithm based on dwt[ C]// 2nd Interna- tional Congress on Image and Signal Processing, 2009:1 --6.
  • 7WU C P,JAY K C, Design of Integrated multimedia com- pression and cncryption systems[ J]. IEEE Trans on Mul- timedia, 2005,7 ( 5 ) : 828 - 839.
  • 8CANDES E, ROMBERG J, TERENCE Tao. Robust un- certainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans On Information Theory ,2006, 52 (2) :489 - 509.
  • 9DONOHO D L, TSAIG Y. Extensions of compressed sensing [ J ]. Signal Processing, 2006,86 ( 3 ) : 533 - 548.
  • 10MUN S, FOWLER J E. Block compressed sensing of images using directional transforms [ C ]//Proceedings of the International Conference on Image Processing, Cai- ro, Egypt, 2009 : 3021 - 3024.

共引文献7

同被引文献43

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部