摘要
在不要求函数在区间连续的假设下,研究了其反函数存在的条件及其在一点的连续和可微的条件,给出了反函数在一点连续的本质刻画.主要结论是原函数在某点连续不是其反函数在相应点连续的必要条件,而是函数将区间映射为区间,最后用例子说明结论的直观性.
In this paper, we study the conditions for the existence, the continuity and the differentiability of inverse functions without the assumption of interval continuity, and characterize the point continuity of an inverse function. Our main result is that the continuity of a function at a point is not necessary to the continuity of its inverse at the corresponding point, but the interval-into-interval mapping of a function.
出处
《高等数学研究》
2016年第5期39-41,共3页
Studies in College Mathematics
基金
华中科技大学自主创新研究基金(2016YXMS003
2014TS066)
华中科技大学教学研究项目(2015067
2015068)
关键词
反函数
严格单调
连续性
可微性
inverse function
strictly monotonicity
continuity
differentiability