期刊文献+

基于异常区域感知的多时相高分辨率遥感图像配准 被引量:1

Registration for multi-temporal high resolution remote sensing images based on abnormal region sensing
下载PDF
导出
摘要 在对多时相高分辨遥感图像进行配准时,由于成像条件差异,图像间存在的地物变化与相对视差偏移两类典型异常区域会影响配准精度。针对上述配准中存在的问题,提出一种基于异常区域感知的多时相高分辨率遥感图像配准方法,包括粗匹配和精配准两个阶段。尺度不变特征变换(SIFT)算法考虑到尺度空间属性,不同尺度空间提取的特征点在图像中对应不同大小的斑块,高尺度空间提取的特征点对应图像中的大斑点,其对应地物相对稳定、不易发生变化。首先,利用SIFT算法提取高尺度空间特征点完成图像快速粗匹配;其次,利用灰度相关性度量对图像块进行相对偏移量统计分类以感知视差偏移区域,同时结合空间约束条件,确定低尺度空间特征点的有效提取区域以及匹配点搜索范围,完成图像精配准。实验结果表明,将该方法用于多时相高分辨遥感图像配准,可有效抑制异常区域对特征点提取的影响进而提高配准精度。 In the processing of registration for multi-temporal high resolution remote sensing images, the phenomena of surface features change and relative parallax displacement caused by differences in acquisition conditions degrades the accuracy of registration. To resolve the aforementioned issue, a registration algorithm for multi-temporal high resolution remote sensing images based on abnormal region sensing was proposed, which consists of coarse and fine registration. The algorithm of Scale-Invariant Feature Transform (SIFT) has a better performance on scale space, the feature points from different scale space indicates the various size of spot. The high scale space points represent the objects which have a stable condition, the coarse registration can be executed depending on those points. For the fine registration, intensity correlation measurement and spatial constraint were used to decide the regions which were used to extract the efficacious points from low scale space, the areas for searching matching points were limited as well. Finally, the accuracy of the proposed method was evaluated from subjective and objective aspects. Experimental results demonstrate that the proposed method can effectively restrain the influence of abnormal region and improve registration accuracy.
出处 《计算机应用》 CSCD 北大核心 2016年第10期2870-2874,共5页 journal of Computer Applications
基金 国家科技支撑计划项目(2012BAF12B06) 青岛市重大专项(13-7-1-ZDZX4-GX)~~
关键词 图像配准 多时相 高分辨率遥感图像 尺度空间 尺度不变特征变换 灰度相关性度量 image registration multi-temporal high resolution remote sensing image scale space Scale-lnvariant Feature Transform (SIFT) intensity correlation measurement
  • 相关文献

参考文献15

  • 1SONG Z, ZHOU S, GUAN J. A novel image registration algorithm for remote sensing under affine transformation [ J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2014, 52(8): 4895 - 4912.
  • 2VONGSY K, EISMANN M T, MENDENHALL M J. Extension of the linear chromodynamics model for spectral change detection in the presence of residual spatial misregistration [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3005 -3021.
  • 3BARNEA D I, SILVERMAN H F. A class of algorithms for fast dig- ital image registration [ J]. IEEE Transactions on Computers, 1972, 21(2): 179-186.
  • 4XING C, QIU P. Intensity-based image registration by nonparamct- ric local smoothing [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2081-2092.
  • 5钟家强,王润生.基于互信息相似性度量的多时相遥感图像配准[J].宇航学报,2006,27(4):690-694. 被引量:5
  • 6舒小华,沈振康.基于特征区域的图像自动配准[J].计算机应用,2012,32(3):759-761. 被引量:2
  • 7WANG W, LUO D, LI W. Algorithm for automatic image registra- tion on Harris-Laplace features [ J]. Journal of Applied Remote Sensing, 2009, 3(1): 033554.
  • 8HUO C, PAN C, I-IUO L, et al. Multilevel SIFT matching for large- size VHR image registration [ J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 171-175.
  • 9MOORTHI S M, GAMBHIR R K, MISRA I, et al. Adaptive sto- chastic gradient descent optimization in multi temporal satellite image registration [ C]// Proceedings of the 2011 IEEE Recent Advances in Intelligent Computational Systems. Piscataway, NJ: IEEE, 2011 : 373 - 377.
  • 10LOWE D G. Distinctive image teatures from scale-invariant key- points [ J]. International Journal of Computer Vision, 2004, 60 (2): 91-110.

二级参考文献25

  • 1王东峰,张丽飞,刘小军,邹谋炎.基于广义特征点匹配的全自动图像配准[J].电子与信息学报,2005,27(7):1013-1016. 被引量:9
  • 2McLAUGHLIN R A,HIPWELL J,HAWKES D J,et al.A comparison of 2D-3D intensity-based registration and feature-based registration for neurointerventions[C] //Proceedings of the 5th International Conference Tokyo,LNCS 2489.Berlin:Springer-Verlag,2002:517-524.
  • 3MOGHE A A,SINGHAI J,SHRIVASTAVA S C.Hybrid feature point based registration of 2D abdominal CT images[J].International Journal of Computer Science Issues,2010,7(4):24-30.
  • 4MORAVEC H P.Visual mapping by a robot rover[C] // IJCAF79:Proceedings of the 6th International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,1979:598-600.
  • 5KOGA M,MINE R,SAKO H,et al.A lexicon driven approach for printed address phrase recognition using a trie dictionary[J].IEICE Transactions on Information and Systems,2003,86 (2):12971307.
  • 6CHONG C W,RAVEENDRAN P,MUKUNDAN R A.Comparative analysis of algorithms for fast computation of Zernike moments[J].Pattern Recognition,2003,36(3):731-742.
  • 7HWANG S, BILLINGHURST M,KIM W. Local descriptor by Zernike moments for real-time keypoint matching[C] // CISP'O8:Congress on Image and Signal Processing.Washington,DC:IEEE Computer Society,2008:781-785.
  • 8HUTCHINSON M F.Interpolation of rainfall data with thin plate smoothing splines[J].Journal of Geographic Information and Decision Analysis,1998,2(2):139-151.
  • 9Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21:977-1000
  • 10Viola P,Wells W M.Alignment by maximization of mutual information[C]// Proc.5th Int Conf.Computer Vision,MA,USA:IEEE,1995,16-23

共引文献11

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部