期刊文献+

不同任务类型下查询重构行为分析 被引量:6

Analysis of Query Reformulation Behavior in Different Task Types
下载PDF
导出
摘要 以高效用查询重构推荐为导向,从查询重构类型入手,揭示各重构类型应用的频率、情境和有效性,以及任务对其的影响,以期提高查询推荐的准确性。101个调查对象共完成606个查询任务,其中222个任务包括查询重构行为,共计420次查询重构行为,以此为对象进行分析。结果显示:①事实型和信息扩展型任务中,具体化应用最多,决策型任务中,则是词语替换最多;②信息扩展型任务中,用户发现有用信息后,更多使用一般化查询重构策略;③事实型任务中,具体化有效性较高,信息扩展型任务中,具体化和词语替换具有较高有效性,而决策型任务中,则是一般化和词语替换相对有效。系统可以据此为用户提供有针对性的、高效用的查询提示服务,提高查询效果和用户满意度。 In order to recommend high utility queries, that is, to improve query recommendation accuracy, the frequency, context, and effectiveness of query reformulation types are revealed and how tasks impact them are explored . A total of 606 information searching tasks were completed by 101 respondents. 420 times query reformulations occurred in 222 tasks. Results showed that: (1)Specialization was most frequently used in Fact Finding and Information Gathering tasks, and Word Substitution was most frequently used in Decision Making tasks; (2)Generalization was more likely used after saving a useful web page in Information Gathering tasks; (3)Specialization was relatively more effective in Fact Finding tasks, Specialization and Word Substitution were more effective in Information Gathering tasks, and Generalization and Word Substitution were more effective query reformulation types in Decision Making tasks. According to these, the system can provide users with targeted and efficient query hints, which can improve the query results and user satisfaction.
作者 孙丽 曹锦丹 Sun Li Cao Jindan(School of Public Health, Jilin University, Changchun 130021)
出处 《情报学报》 CSSCI 北大核心 2016年第9期980-988,共9页 Journal of the China Society for Scientific and Technical Information
基金 国家社科基金项目"交互式信息服务环境下的用户认知需求及其量表的开发和应用研究"(项目编号:13BTQ058)研究成果之一
关键词 任务类型 查询重构 频率 情境 有效性 task type, query reformulation, frequency, situation, effectiveness
  • 相关文献

参考文献26

  • 1Jansen B J, Booth D L, Spink A. Patterns of query reformulation during Web searching[J]. Journal of the American Society for Information Science and Technology, 2009, 60(7) : 1358-1371.
  • 2Ma H, King I, Lyu M R. Mining web graphs for recommendations[ J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(6) : 1051-1064.
  • 3Anagnostopoulos A, Becehetti L, Castillo C, et al. An optimization framework for query recommendation [ C ]// Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM'10). New York: ACM, 2010: 161-170.
  • 4Wang J, Huang J Z, Guo J, et al. Recommending high- utility search engine queries via a query-recommending model [ J ]. Neuroeomputing, 2015 ( 167 ) : 195-208.
  • 5Boldi P, Bonehi F, Castillo C, et al. Query suggestions using query-flow graphs [ C ]//Proceedings of the Workshop on Web Search Click Data (WSCD'09). New York: ACM, 2009 : 56-63.
  • 6Wang J, Huang J Z, Guo'J, et al. Query ranking model for search engine query recommendation [ J ]. International Journal of Machine Learning & Cybernetics, 2015(5) :1-20.
  • 7Liu J, Belkin N J. Personalizing information retrieval for multi-session tasks: examining the roles of task stage, task type, and topic knowledge on the interpretation of dwell time as an indicator of document usefulness [ J ]. Journal of the Association for Information Science and Technology, 2015, 66(1) : 58-81.
  • 8Zhang Y, Wang P, Heaton A, et al. Health Information Searching Behavior in MedlinePlus and the Impact of Tasks [ C ]// Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (IHI'12). New York: ACM, 2012: 28-30.
  • 9Huang J,Efthimiadis E N. Analyzing and evaluating query reformulation strategies in web search logs [ C ]// Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM'09). New York: ACM, 2009:77-$6.
  • 10Xue X,Croft W B. Modeling Reformulation Using Query Distributions [ J ]. ACM Transactions on Information Systems, 2013, 31(2) :134-171.

二级参考文献63

  • 1张贝妮,王军.数字图书馆中的检索式扩展方法研究[J].计算机应用研究,2006,23(4):71-73. 被引量:6
  • 2卢春燕,雷景生.基于模糊关联的交互式Web信息检索技术[J].广西师范大学学报(自然科学版),2007,25(2):107-110. 被引量:4
  • 3王鑫.搜索引擎用户点击行为研究[D].北京:清华大学,2009:55.
  • 4Taylor R.Information use environments[M]//Dervin B,Voigt M J.Progress in Communication Sciences.Norwood:Ablex,1991:217-255.
  • 5Thompson R L,Higgins C A,Howell J M.Influence of experience on personal computer utilization:Testing a conceptual model[J].Journal of Management Information Systems,1994,11(1):167-187.
  • 6Tricot A,Golanski C.Towards a description of information seeking tasks contributing to the design of communications objects and services[M]//Kintzig C,Poulain G,Privat G,et al.Communicating with Smart Objects.Developing Technology for Usable Pervasive Computing Systems.London:Kogan,2003:257-272.
  • 7Bystrm K.Information and information sources in tasks of varying complexity[J].Journal of the American Society for Information Science and Technology,2002,53(7):581-591.
  • 8Broder A.A taxonomy of Web search[J].ACM SIGIR Forum,2002,36(2):2-10.
  • 9Kellar M,Watters C,Shepherd M.A field study characterizing Web-based information-seeking tasks[J].Journal of the American Society for Information Science and Technology,2007,58(7):999-1018.
  • 10Kim S,Soergel D.Selecting and measuring task characteristics as independent variables[C]//Proceedings of the American Society for Information Science and Technology.New York:Wiley,2005:1-16.

共引文献15

同被引文献36

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部