期刊文献+

基于星载高精度GPS观测数据的大气密度反演 被引量:3

Thermospheric density derived from onboard GPS observation data
下载PDF
导出
摘要 星载高精度GPS观测数据可提供卫星速度和位置信息,而卫星的运行轨迹又与所处位置的大气密度紧密相关,因此可通过求解大气阻力微分方程,由高精度GPS观测数据反演出卫星运行轨迹上的热层大气密度.本文从星载高精度GPS观测数据出发,给出大气密度的反演方法,以及平均平动参数nM、反弹道系数B两个重要参数的解算过程,并以天宫一号为例,给出反演结果与天宫一号观测数据的比对.结果表明,反演结果与观测值符合很好,两者的均方差在2012年1月1日、2月24日分别为8.6%和8.4%,说明利用星载GPS观测数据反演大气密度是有效、可行的,可成为今后获取高精度大气密度的一种方法. Onboard GPS observation data of a satellite includes accurate information of velocity and location,which are closely related to atmospheric density.Therefore,these GPS information can be used to derive thermospheric density through integration of differential equation.This paper presents a new method of deriving atmospheric density with a high temporal resolution from precise orbit data of low earth orbiting(LEO)space objects,and also presents the solution procedure of mean motion nM and the inverse ballistic coefficient B which are the two most important parameters for retrieving density.Tiangong-1is taken as an example to evaluate the effectiveness of the method.The result shows that the GPS-derived density is in good agreement with observed density with the average error 8.6% and 8.4% respectively on 1st January and24 th February in 2012 for Tiangong-1.This result indicates the method provides an effective and reliable way to obtain extensive and accurate thermospheric density.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2016年第10期3566-3572,共7页 Chinese Journal of Geophysics
基金 宇航动力学国家重点实验室开放基金项目(2014ADL-DW0303 2016ADL-DW304) 国家863计划(2015AA7033102B)联合资助
关键词 GPS观测数据 平运动 反弹道系数 热层大气密 GPS parameter Mean orbit element Inverse ballistic coefficient Thermospheric density
  • 相关文献

参考文献2

二级参考文献14

  • 1Bowman B R. A new empirical thermospheric densitymodel JB2008 using new solar and geomagnetic in-dices[R]. AIAA/AAS Astrodynamics Specialist Confer- ence 18-21 August 2008, Honolulu, Hawaii, 2008.
  • 2Kallmann-Bijl H, Boyd R L F, Lagow H, Poloskov S M, Priester W. Cira 1961: COSPAR International Reference Atmosphere 1961 [R]. Amsterdam: North-Holland Publi-shing Company, 1961.
  • 3Jacchia L G. New static models of the thermosphere and exosphere with empirical temperature models [R]. Techni- cal Report 313, Smithsonian Astrophysical Observatory, 1970.
  • 4Berger C, Biancale R Ill M, Barlier F. Improvement of the empirical thermosphere model DTM: DTM-94 - acomparative review of various temporal variations and prospects in space geodesy applications [J]. J. Geod., 1998, T2(3):161-178.
  • 5Bruinsma S, Thuillier G, Barlier F. The DTM-2000 em- pirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and proper- ties [J]. J. Atmos. Solar-Terr. Phys., 2003, 65:1053-1070.
  • 6Hedin A. MSIS-86 thermospheric model [J]. J. Geophys. Res., 1987, 92(A5):4649-4662.
  • 7Hedin A E. Extension of the MSIS thermospheric model into the middle and lower atmosphere [J]. J. Geophys. Res., 1991, 96(A2):1159-1172.
  • 8Picone J, Hedin A, Drob D, Aikin A. NRLMSISE-00 empirical model of the atmosphere: statistical compar- isons and scientific issues [J]. J. Geophys. Res., 2002, 107(A12):SIA15.1-SIA15.16.
  • 9Marcos F, Bass J, Baker C, Boner W. Neutral density models for aerospace applications [R]//32nd Aerospace Sciences Meeting and Exhibit, January 10-13, 1994/Reno, NY, 1994.
  • 10Rhoden E, Forbes J, Marcos F. The influence of geomag- netic and solar variabilities on lower thermosphere den- sity[J]. J. Atmos. Solar-Tort. Phys., 2000, 62:999-1013.

共引文献18

同被引文献28

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部