期刊文献+

一种改进的Index Calculus算法 被引量:3

An improving algorithm of index calculus
下载PDF
导出
摘要 IC(index calculus)是一种计算离散对数的概率型算法,存在盲目性和计算效率不高的问题,为此,利用多项式度逐渐下降的方法,提出一种基于IC算法的改进算法,简称IIC算法。改进算法讨论了当光滑界为指数的1/2时,将所求对数中未知多项式因式逐个变换到分解基中,然后计算出离散对数。IIC算法将IC算法中尝试求解的方法改变成寻找已知不可约多项式的方法,即从概率型算法转换为确定型算法,避免了盲目性,计算效率有了一定的提升。实例验证表明,IIC算法的可行和有效性。复杂性分析表明,IIC算法具有明显的优越性。 The IC( index calculus) is a probabilistic algorithm of computing discrete logarithms,which has problems of blind on solving discrete logarithms and low efficiency on computation. Therefore,as the smooth boundary be index of 1 /2,with strategy of polynomial degree gradually declining,an improved algorithm based on IC was put forward,referred to as IIC. The IIC transforms unknown irreducible polynomial factor to factor base one by one.Finally,an individual discrete logarithm was computed by the IIC. The ICC transformed the IC's testing way to find irreducible polynomial based on factor base so that the ICC became an algorithm of determining. The IIC was high effective because of avoiding blindness. Some examples showed the IIC was feasible and effective. By complexity analysis,the IIC has the obvious superiority.
作者 胡建军 王伟 李恒杰 HU Jianjun WANG Wei LI Hengjie(School of Digital Media, Lanzhou University of Arts and Science, Lanzhou 730010, China)
出处 《南昌大学学报(工科版)》 CAS 2016年第3期286-289,共4页 Journal of Nanchang University(Engineering & Technology)
基金 国家自然科学基金资助项目(61070162 71071028 70931001) 甘肃省高等学校科学研究项目(2015B-136)
关键词 离散对数 分解基 不可约多项式 多项式分解 乘法模 discrete logarithm factor base irreducible polynomial polynomial factorization multiplication module
  • 相关文献

参考文献11

  • 1ADLEMAN L M. A subexponential algorithm for discretelogarithms with applications to cryptography [ C ]//Proc 20th IEEE Found Comp Sei Symp, IEEE Computer Socie- ty, Long Beach, CA, 1979:55 - 60.
  • 2HELLMAN M E, REYNERI J M. Fast computation of dis- crete logarithms in GF(q) [ C ]//Advances in Cryptogra- phy : Proceedings of CRYPTO 82 ( D. Chaum, R. Rivest, A. Sherman, eds. ), Plenum Press New York, 1983 : 3 - 13.
  • 3ADLEMAN L M, DEMARRAIS J. A subexponential algo- rithm for discrete logarithms over all finite fields [ J ]. Mathematics of computation, 1993,61 (203) : 1 - 15.
  • 4PADMAVATHY R, BHAGVATI C. Index calculus method based on smooth numbers of -+ 1 over Zp [ J ]. Internation- al Journal of Network Security,2013,15 ( 1 ) :210 - 218.
  • 5FAUGRE J C, GAUDRY P, HUOT L, et al. Using Sym- metries in the Index Calculus for Elliptic Curves Discrete Logarithm [ J ]. Journal of Cryptology, 2014, 27:595 - 635.
  • 6JOUX A, VITSE V. Cover and decomposition index calcu- lus on elliptic curves made practical [ J ]. Advances in Cryptology-Eurocrypt 2012, Springer,7237 : 9 - 26.
  • 7JOUX A. Faster index calculus for the medium prime case application to 1175 - bit and 1425 - bit finite fields [ C ]//Johansson, T, Nguyen, P. Advances in Cryptology- Uuocrypt 2013. Lncs,2013,7881:177 - 193.
  • 8JOUX A. A new index calculus algorithm with complexity L( 1/4 + o ( 1 ) ) in small characteristic [ C ]//Lange T, Lauter K, Lisonek P. Selected Areas in Cryptography-Sac 2013. Lncs ,2013,8282:355 - 379.
  • 9BARBULESCU R, GAUDRY P, JOUX A, et al. A heuris- tic quasi-polynomial algorithm for discrete logarithm in fi- nite fields of small characteristic [ C ]//Nguyen P, Oswald E. Advances in Cryptology-Eurocrypt 2014. Lncs,2014, 8441 : 1 - 16.
  • 10JOUX A, PIERROT C. Improving the polynomial time precomputation of frobenius representation discrete log- arithm algorithms-simplified setting for small characteris- tic finite fields [ C ]//Sarkar P, Iwata T. Advances in Cryptology-Asiacrypt 2014. Lncs,2014,8873 : 378 - 397.

二级参考文献6

  • 1THIONG J A. A serial version of the Pohlig-Hellman algo- rithm for computing discrete logarithms [ J ]. AAECC, 1993,4( 1 ) :77 - 80.
  • 2POHLIG S C, HELLMAN M E. An improved algorithm for computing logarithms over GF (p) and its cryptographic significance[ J ]. IEEE Info Theo Soc, 1978,24 ( 1 ) : 106 -110.
  • 3SHOUP V. Lower bounds for discrete logarithms and relat- ed problems [ C ]//Advances in Cryp tology-Eurocrypt' 97, Lecture Notes in Computer Science Volume 1233. Springer Berlin Heidelberg, 1997:256 - 266.
  • 4STEIN A, TESKE E. Optimized baby step-giant step meth- ods [ J ]. J Ramanujan Math Soc, 2005,20 ( 1 ) : 1 - 32.
  • 5DIEM C. On the discrete logarithm problem in elliptic curves[ J ]. Compo Math,2011,147 ( 1 ) :75 - 104.
  • 6胡建军,裴东林.Pohlig-Hellman算法的改进[J].湖南师范大学自然科学学报,2013,36(5):19-22. 被引量:6

共引文献4

同被引文献8

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部