期刊文献+

螺带-螺杆搅拌槽内流动与剪切特性的数值模拟 被引量:4

Numerical Simulation of Flow and Shear Characteristics in Helical Ribbon-Screw Impeller Stirred Tanks
下载PDF
导出
摘要 以高黏物系混合为背景,采用数值模拟方法,选用高黏强剪切稀化流体为研究对象,考察了桨叶几何结构对螺带-螺杆搅拌槽内的流场及剪切特性的影响,研究内容包括流场精细结构(轴向速度及剪切速率分布)及搅拌槽宏观特性参数(轴向循环流量及体积平均剪切速率).计算发现,对搅拌槽内轴向速度影响最为显著的几何结构参数为螺带宽度(w_(HR)),随着w_(HR)/d_(HR)由0.05增大至0.20,最大向下无量纲轴向速度(u_z/u_(tip))_(maxD)由0.09增大至0.34;w_(HR)/d_(HR)=0.13时,搅拌槽内轴向循环流量Qz达到最大;搅拌槽内剪切速率与桨叶宽度及直径成正比,与螺距成反比;壁区影响最为敏感的为桨叶直径;s_(HR)/d_(HR)=0.4时,搅拌槽内体积平均剪切速率最高.最后,综合考虑搅拌槽内流场及剪切特性的几何效应,给出了螺带-螺杆搅拌桨设计建议. The flow and shear characteristics in helical ribbon-screw impeller stirred tank were investigated numerically and the influence of the geometrical parameters was given in the mixing of high viscous and highly shear-shinning liquid. The detailed flow structure (axial velocity and shear strain profile) and macro mixing parameters of the stirred tank (axial circulation rate and volumetric average shear strain rate) were given. It was found that the impeller width (wHR) had the most obvious effect on the liquid axial velocity. The downward maximum dimensionless axial velocity (uz/uip)maxD increased from 0. 09 to 0. 34 and the axial circulation rate (Qz) reached maximum at WHR/dHR=0. 13. The shear strain rate was proportional to WHR and dnR, and was inversely proportional to SHR. The volume average shear strain rate of the wall region (7 k) was most sensitive to impeller diameter and that of the tank (γav)Was highest at SHR/dHR= 0. 4. Considering the effect of geometry on the flow and shear characteristics, suggestions of the design parameters of the impeller were provided.
作者 黄娟 朱孔春
出处 《上海应用技术学院学报(自然科学版)》 2016年第3期262-267,共6页 Journal of Shanghai Institute of Technology: Natural Science
基金 上海市高校青年教师培育基金资助项目(ZZyyy15117) 上海应用技术学院引进人才基金资助项目(YJ2014-39)
关键词 螺带-螺杆搅拌桨 流动 剪切 数值模拟 helical ribbon-screw impeller flow shear numerical simulation
  • 相关文献

参考文献13

  • 1WILKINSON J B, MOORE R J, HARRY R G. Harry's cosmeticology[M]. London: George Wikin- son, 1982:787-815.
  • 2STAROV V. Kinetics of spreading surfactant solutions in fluid mechanics of surfactant and polymer solutions[M]. Verlag Wien: Springer, 2004: 117-147.
  • 3PAUL E L, ATIEMO-OBENG V A, KRESTA S M. Handbook of industrial mixing: science and prac- tice[M]. New Jersey: John Wiley ga Sons, 2004: 715-727.
  • 4DRISS Z, KARRAY S, KCHAOUE H, et al. CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers[J]. Cent Eur J Eng, 2011, 1 (4) : 413-422.
  • 5DELAPLACE G, GUERI R, LEULIET J C, et al. An analytical sumption for and helical s model for the prediction of power con- shear-thinning fluids with helical ribbon ribbon impellers [ J ]. Chemical Engineering Science, 2006, 61(10): 3250-3259.
  • 6DE LA VILLEON J, BETRAND F, TANGUY P A, et al. Numerical investigation of mixing efficiency of helical ribbons[J].AIChE Journal, 1998, 44(4):972-977.
  • 7黄娟,鲍杰,戴干策.螺带型叶轮搅拌槽内流场分析与计算[J].过程工程学报,2010,10(5):833-841. 被引量:5
  • 8SANJUAN GALINDO R, HENICHE M, AS- CANIO G, et al. CFD investigation of new helical ribbon mixers bottom shapes to improve pumping[J]. Asia-Pacific Journal of Chemical Engineering, 2011, 6(1): 181-193.
  • 9AMEUR H, BOUZIT M, GHENAIM A. Hydrody- namics in a vessel stirred by simple and double helical ribbon impellers[J]. Open Engineering, 2013, 3(1): 87-98.
  • 10张靖,陈兵奎,李朝阳.螺带-螺杆式搅拌器三维流场数值模拟[J].化工进展,2011,30(8):1693-1697. 被引量:8

二级参考文献31

  • 1孙会.搅拌罐内气液两相流场的数值研究[J].上海电机学院学报,2008,11(3):189-192. 被引量:5
  • 2宋月兰,高正明,李志鹏.多层新型桨搅拌槽内气-液两相流动的实验与数值模拟[J].过程工程学报,2007,7(1):24-28. 被引量:31
  • 3Zhang J, Chu D Q, Huang J, et al. Simultaneous Saccharification and Ethanol Fermentation at High Corn Stover Solids Loading in a Helical Stirring Bioreactor [J]. Biotechnol. Bioeng., 2009, 105(4): 718-728.
  • 4Bourne J R, Butler H. Power Consumption of Helical Ribbon Impellers in Viscous Liquids [J]. Trans. Inst. Chem. Engrs., 1969a, 47(3): T263-270.
  • 5Takahashi K, Minoru S, Kunio A, et al. Effects of Geometrical Variables of Helical Ribbon Impellers on Mixing of Highly Viscous Newtonian Liquids [J]. J. Chem. Eng. Jpn., 1982, 15(3): 217-224.
  • 6Ishibashi K, Yamanaka A, Mitsuishi N. Heat Transfer in Agitated Vessels with Special Types oflmpellers [J]. J. Chem. Eng. Jpn., 1978, 12(3): 230-235.
  • 7Nagata S, Yanagimoto M, Yokoyama T. A Study on the Mixing of Highly-viscosity Liquid [J]. J. Chem. Eng. Jpn., 1957, 21(5): 278-286.
  • 8Bourne J R, Butler H. An Analysis of the Flow Produced by Helical Ribbon Impellers [J]. Trans. Inst. Chem. Engrs., 1969b, 47(1): T11-17.
  • 9Carreau P J, Patterson I, Yap C Y. Mixing of Viscoelastic Fluids with Helical Ribbon Agitators: I. Mixing Time and Flow Patters [J]. Can. J Chem. Eng., 1976, 54(3): 135-142.
  • 10Yao W G,Mishima M, Takahashi K. Numerical Investigation on Dispersive Mixing Characteristics of MAXBLEND and Double Helical Ribbons [J]. Chem. Eng. J., 2001, 84(3): 565-571.

共引文献18

同被引文献44

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部