摘要
本文依据广义函数的概念研究含参量t的跃闭函数及门函数,文中论证了它们既满足广义函数的定义,又具有广义函数的性质,从而导出了广义函数的一个新分支——含参变量t的广义函数。
For a linear time-invariant system, suppose that its input and impulse response are respectively x(t) =x0(t)u(t-t0) and h(t) =h0(t)u(t-ts). Then the zero state response of the system will bewhere φ(t,τ) = x0(τ)h0(t -τ) , g(t,τ) =Gtk[(t-ts) - t0] Δ=u(τ- t0)u(t- ts -τ).A gate function containing parameter t based on the distribution theory can be defined asnamely,Similarly, a unit step function u(t-τ) containing parameter t can also be defin ed on the distribution theory. Then the conclusion can be drawn that the singularity function containing parameters is a new branch of generalized functions.Let the branch of generalized function be g(t,τ), and the testing function in space D be φ(t,τ), then the theory of distribution used originally to define the generalized function g(t) will still be valid and the properties of generalized function g(t) will also be true in general.
出处
《华中理工大学学报》
CSCD
北大核心
1989年第2期87-92,共6页
Journal of Huazhong University of Science and Technology
关键词
参变量t
广义函数
门函数
Generalized function
Gate function
Singularity function
Testing function
Distribution theory