期刊文献+

基于社会化标签的图书推荐系统模型研究 被引量:3

Study of Social Tag-based Book Recommendation System Model
下载PDF
导出
摘要 [目的/意义]从社会化标签视角探讨图书推荐系统模型。[过程/方法]分析3种主流的标签推荐模型(基于主题、网络和张量的模型)和3种标签推荐算法(基于内容、协同过滤和混合推荐算法)的优缺点,构建基于标签的图书推荐系统模型。[结果/结论]该模型由数据采集模块、数据预处理模块和协同过滤推荐模块组成,可以在一定程度上解决推荐系统中的标签语义模糊、用户兴趣多变、可扩展性差等问题,以提高图书推荐效率和准确度。 [Purpose/significance]The paper is to discuss book recommendation system model from the perspective of social tags. [Method/process]The paper analyzes the advantages and disadvantages of three mainstream recommendation models (subject, network, and tensor based models) and three tag recommendation algorithms (content, collaborative filtering based and hybrid algorithms), and constructs a tag-based book recommendation system model. [Result/conclusion]The model is composed of data acquisition module, data preprocessing module and collaborative filtering recommendation module, can solve the problems of fuzzy tag semantics, changing users' interest, and poor expandability to some extent, so as to improve efficiency and accuracy of book recommendation.
作者 付凯丽
出处 《情报探索》 2016年第10期80-85,共6页 Information Research
基金 天津师范大学教育基金项目"以科研为导向的图书馆学科服务平台建设"(项目编号:52WT1408)研究成果之一
关键词 社会化标签 图书推荐系统 LDA 协同过滤 social tag book recommendation system LDA collaborative filtering
  • 相关文献

参考文献6

  • 1武慧娟,徐宝祥,周兰萍.国外基于标签的个性化信息推荐模型研究进展[J].图书情报工作,2013,57(7):122-126. 被引量:4
  • 2BLEI D M,NG A Y,JORDAN M I. Latent Dirichlet Allocation[J]. The Journal of Machine Learning Research,2003 (3) :993-1022.
  • 3高成.基于标签主题建模的图书推荐系统研究[D].杭州:浙江大学.2013.
  • 4SYMEONIDIS P, NANOPOULOS A, MANOLOPOU- LOS Y. Tag recommendations based on tensor dimensionality re- duction[C]//Proceedings of the 2008 ACM conference on recom- mender systems. New York: ACM, 2008:43-50.
  • 5RENDLE S,MARINHO LB,Nanopoulos A,et el. Learning Optimal Ranking with Tensor Factorization for Tag Recommendation [C]//Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data min- ing. New York: ACM, 2009 : 1-9.
  • 6KUROIWA T,BHALLA S. Dynamic personalization for book recommendation system using Web Services and virtual library enhancements [C]. CIT 2007:7th IEEE International Conference on Computer and Information Technology,2007: 212-217.

二级参考文献32

  • 1Zhou Tao,Ren Jie, Medo M,et al. Bipartite network projection and personal recommendation[ EB /OL ]. [ 2012 - 08 - 22 ]. http :// pre. aps. org/abstract/PRE/v76/i4/e046115.
  • 2Smyth B, Cotter P. Surfing the digital wave [ EB/OL ]. [ 2013 - 02 -28 ]. http://link, springer, com/chapter/10. 1007% 2F3 -540 -48508 - 2_41 ? LI = true#page - 2.
  • 3Robert J, I~andro M, Andreas H. Tag recommendations in folksonomies [EB/OL]. ]2013 -03 -05]. http://www, kde. cs. uni-kass el. de/ stumn~/papers/2(I)7/jaeschke07tagrecommendationsKDML, pdf.
  • 4Firan C S, Nejdl W, Paiu R. The benefit of using tag -based profiles[ EB/OL]. [ 2013 - 02 - 28 ]. http://www, kbs. uni - hannover, de/Arbeiten/Publikationen/2007/paiu-TagProfiles, pdf.
  • 5Sturtz D N. Communal categorization : The folksonomy [ EB/OL]. [2013 - 02 - 28 ]. http://davidsturtz, com/drexel/622/sturtz- folksonomy, pdf.
  • 6Lambiotte R, Ausloos M. Collaborative tagging as a tripartite network [ EB/OL]. [ 2012 - 08 - 22]. http ://arxiv. org/pdf! cs/ 0512090. pdf.
  • 7Zhang Zike,Zhou Tao, Zhang Yicheng. Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs [ J ]. Physica A,2010,389( 1 ) :179 - 186.
  • 8Shang Mingsheng, Zhang Zike, Zhou Tao. Collaborative filtering with diffusion based similarity on tripartite graphs [ J ]. Physica A, 2010,389 (6) :1259 - 1264.
  • 9Cattuto C,Schmitz C, Baldassarri A, et al. Network properties of folksonomies [ J ]. AI Communications, 2007, 20 (4) :245 - 262.
  • 10Ghoshal G, Zlatic V, Caldarelli G, et al. Random hypergraphs and their applications [ EB/OL]. [ 2012 - 08 - 22 ]. http ://arxiv. org/ abs/0903. 0419.

共引文献3

同被引文献43

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部