期刊文献+

大数据应用企业划分与云平台构建研究 被引量:1

Study on Classification of Big Data Application Enterprises and Construction of Cloud Platform
下载PDF
导出
摘要 [目的/意义]对涉及大数据技术应用的企业进行划分并构建云平台,帮助企业明确自身在数据时代的位置和优劣势,制定经营决策、发展计划和竞争战略。[方法/过程]通过对大数据应用企业的实例分析,从信息资源管理角度对大数据应用企业进行维度分类,对属于每一维度的企业给予定义和特征描述。从企业外部信息资源角度探讨构建各类企业云存储平台。[结果/结论]构建国家政策与法律、宏微观经济、科技与文化、网络社交媒体与舆情、企业客户群、企业竞争情报的云存储平台,能够帮助企业提高数据存储和处理能力,提高企业对信息资源的利用效率。 [Purpose/significance]The paper is to classify big data application enterprises and construct a cloud platform, to help enterprises determine their own positions, the advantages and disadvantages in the era of big data, and make operating decision, devel- oping plan and competition strategy. [Method/process]The paper bases on case analysis of big data application enterprises, classifies the dimensions of these enterprises from the angle of information resource management, gives the definition and describes the features of enterprises in each dimension. And then discusses construction of cloud storage platforms for all types of enterprises from the angle of enterprise's external information resource. [Result/conclusion]The constructions of cloud storage platforms of national policies and laws, macro and micro economy, sci-tech and culture, web-based social media and public opinion, enterprise's customer group, and enterprise competitive intelligence, can help enterprises improve data storage and processing capability and increase efficiency of enterprise's information resource utilization.
出处 《情报探索》 2016年第10期130-134,共5页 Information Research
关键词 企业 大数据技术 信息资源 云存储 云平台 海量数据 enterprise big data technology information resource cloud storage cloud platform massive data
  • 相关文献

参考文献14

二级参考文献74

  • 1宋卫星,李登道.我国企业信息资源管理现状及发展[J].管理观察,2008(18):50-52. 被引量:6
  • 2李生琦,徐福缘,徐莹.一种结构化数据和半结构化数据的统一集成模型[J].计算机工程与应用,2004,40(15):34-36. 被引量:5
  • 3[OL].<http://hadoop.apache.org.>.
  • 4WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 5TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 6Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 7Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 8Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 9DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 10Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.

共引文献1105

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部