摘要
Presence of the outer perforated cylinder reduces the direct wave impact on the inner cylinder, which has been testified by many researchers. However, the force reduction mechanism, which is complicated due to the wave-porous structure interaction, needs to be addressed in detail. The present study explains the mechanism with the aid of the computational fluid dynamics (CFD) tool STAR CCM+. This package is chosen for its capabilities to simulate viscous and turbulence effects caused by passage of waves. For the present study, flow fields around the twin cylinders with different orientations are examined with and without the outer perforated cover. Mechanism contributing to the reduction of force on the existing structure is explained in physical terms, and force reduction is quantified. The present study has direct application in the retrofitting application of offshore members.
Presence of the outer perforated cylinder reduces the direct wave impact on the inner cylinder, which has been testified by many researchers. However, the force reduction mechanism, which is complicated due to the wave-porous structure interaction, needs to be addressed in detail. The present study explains the mechanism with the aid of the computational fluid dynamics (CFD) tool STAR CCM+. This package is chosen for its capabilities to simulate viscous and turbulence effects caused by passage of waves. For the present study, flow fields around the twin cylinders with different orientations are examined with and without the outer perforated cover. Mechanism contributing to the reduction of force on the existing structure is explained in physical terms, and force reduction is quantified. The present study has direct application in the retrofitting application of offshore members.
基金
supported by the Naval Research Board,Government of India(Grant No.DNRD/05/4003/NRB/220)