期刊文献+

近断层地震动作用下铅芯橡胶隔震体系的参数优化

Parameter Optimization of LRB Isolation System Subjected to Near-fault Ground Motions
下载PDF
导出
摘要 以铅芯橡胶隔震支座耗散的地震能量最大为目标函数,以隔震层最大位移和顶层加速度峰值最小为主要约束条件,对近断层地震动作用下LRB隔震体系的参数进行优化。研究表明,在近断层地震动作用下LRB隔震体系屈服剪力系数的最优取值范围为0.1~0.14,最佳屈服剪力系数随着第二隔震周期的增大而减小,屈服位移较高时最佳屈服剪力系数也较大。屈服前刚度与屈服后刚度比的最优取值范围为16~35,但最优刚度比随屈服位移的减小呈比例增大,刚度比随屈服剪力系数的增大也略有增大。 The objective function selected for optimality is the maximization of seismic energy dissipation of LRB. The main constraint condition selected for optimality are the minimization of both the maximum displacement of isolation layer and the peak top floor acceleration. The parameters of LRB isolation system under near-fault ground motions are optimized. The research indicates that the optimum yield shear coefficient of the LRB is found to be in the range of 0. 10 ~ 0. 14 under near-fault motions. The yield shear coefficient decreases with the increase of second isolation period. The optimum yield shear coefficient of LRB with higher yield displacement is larger than the bearing with low yield displacement. The optimum yield shear stiffness and post-yield stiffness ratio of the LRB is found to be in the range of 16- 35. The optimum stiffness ratio increases proportionally with the decrease of yield displacement. The optimum stiffness ratio increases slightly with the increase of yield shear coefficient.
出处 《工程抗震与加固改造》 北大核心 2016年第4期79-86,共8页 Earthquake Resistant Engineering and Retrofitting
基金 山东省自然科学基金(ZR2013EEL020) 国家自然科学基金(51479174)
关键词 近断层地震动 LRB隔震体系 屈服剪力系数 屈服位移 刚度比 near-fault ground motion LRB isolation system yield shear coefficient yield displacement stiffness ratio
  • 相关文献

参考文献12

  • 1Hall J F, Heaton T H, Halling MW, Wald D J. Near- source Ground Motion and Its Effects on Flexible Buildings[J]. Earthquake Spectra, 1995,11 (4) :569 - 605.
  • 2Chopra A K, Chintanapakdee C. Comparative Response of SDF System to Near-fault and Far-fault Earthquake Motions in the Context of Spectral Regions [ J ]. Earthquake Engineering and Structural Dynamics, 2001, 30(12) : 1769 - 1789.
  • 3Mavroeidis G P, Dong G, Papageorgiou A S. Near-fauh Ground Motions, and the Response of Elastic and Inelastic Single-degree-of-freedom System [ J ]. Earthquake Engineering and Structural Dynamics, 2004, 33(9) : 1023 - 1049.
  • 4Bray J D, RodriguezM arek. Characterization of Forward-directivity Ground Motions in the Near-fault Region [ J ]. Soil Dynamics and Earthquake Engineering, 2004, 24 : 815 - 828.
  • 5Kalkan E, Kunnath S K. Effects of Fling Step and Forward Directivity on Seismic Response of Buildings [ J ]. Earthquake Spectra, 2006,22 ( 2 ) : 367 - 390.
  • 6Jangid R S, Kelly J M. Base Isolation for Near-fauh Notions [ J ]. Earthquake Engineering and Structural Dynamics, 2001,30.691 - 707.
  • 7Liao W I, Loh C H, Lee B H. Comparison of Dynamic Response of Isolated and Non-isolated Continuous Girder Bridge Subjected to Near-fault Ground Motions [ J ]. Engineering Structures, 2004, 26 : 2173 - 2183.
  • 8Jangid R S. Optimum Lead-rubber Isolation Bearings for Near-fauh Motions [ J]. Engineering Structures, 2007, 29:2503-2513.
  • 9杨迪雄,李刚,程耿东.近断层地震动作用下基础隔震结构的一体化动力优化设计[J].建筑结构学报,2006,27(1):42-49. 被引量:11
  • 10荣强,程文瀼.并联基础隔震体系的参数优化[J].工程力学,2009,26(10):140-146. 被引量:6

二级参考文献23

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部