期刊文献+

基于矩阵分解与用户社会关系的协同过滤推荐算法

Collaborative Filtering Recommendation Algorithm Based on Matrix Factorization and User Social Relationships
下载PDF
导出
摘要 矩阵分解技术虽然已成功应用到协同过滤推荐系统中,但是基于矩阵分解的传统协同过滤方法仍然存在着数据稀疏性、冷启动等问题。为了进一步提高系统推荐的准确性,提出将用户间的社交关系融合到矩阵分解的协同过滤推荐系统中,该方法以奇异值矩阵分解推荐模型为核心,对该模型添加用户偏置和项目偏置,同时将用户在社交网络中的朋友关系添加到矩阵分解模型中,然后采用一种随机梯度下降法对该矩阵进行分解,得到用户潜在特征和物品潜在特征。最后通过实验结果验证表明,所提出的算法具有较好的预测效果,其性能明显优于现有的相关算法。 Although matrix factorization(MF) based method has been successfully applied to collaborative filtering(CF). Recommender System(RS),it still suffers from data sparsity, cold start and other issues. In order to further improve the accuracy of the CF, integrates the social relationship among users into MF based CF. Based on singular value decomposition(SVD), the proposed method merged social friendships, the users rating bias and items rating bias into MF model. Designs a Stochastic Gradient Descent(SGD) algorithm to obtain potential user feature matrix and item feature matrix. Experimental results show that the proposed algorithm has good prediction accuracy,which is better than the existing algorithms.
作者 朱爱云 ZHU Ai-yun(School of Computer and Software Engineering, Weifang University of Science and Technology, Shouguang 26270)
出处 《现代计算机》 2016年第17期3-7,共5页 Modern Computer
关键词 协同过滤 矩阵分解 推荐系统 梯度下降 Collaborative Filtering Matrix Factorization Recommender System Gradient Descent
  • 相关文献

参考文献14

  • 1H.Ma,D.Y.Zhou,C.Liu,M.R.Lyu,I.King. Recommender Systems with Social Regularization, in: Proceedings of the 4th ACM International Conference on Web Search and Data Mining,2011,287-296.
  • 2J.T.Liu,C.H.Wu,W.Y.Liu. Bayesian Probabilistic Matrix Factorization with Social Relations and Item Contents for recommendation, De-cision Support Systems,2013,6(55):838-850.
  • 3W.J.Li,D.Y.Yeung. Relation Regularized Matrix Factorization, in: Proceedings of the 21st International Joint Conference on Artificial Intelligence,2009,1126-1131.
  • 4M.Jamali,M.Ester. A Transitivity Aware Matrix Faetorization Model for Recommendation in Social Networks, Proceedings of the Twen- ty-Second International Joint Conference on Artificial Intelligence,2011,2644-2649.
  • 5F.M.Hsu,Y.T.Lin,T.K.Ho. Design and Implementation of an Intelligent Recommendation System for Tourist Attractions The Integration of EBM model, Bayesian network and Google maps[J].Expend Systems with Applications, 2012,2(39):3257-3264.
  • 6X.Qi,W.Wu,Y.Huang,T.L.Huang,K.Fu, Rating Correlated Topic Model: An Improved Latent Semantic Model for Collaborative Filtering. Journal of Computational Information Systems, 2014, 10( 17): 7259-7267.
  • 7Y.Koren,R.Bell,Advances in collaborative filtering, Recommender Systems Handbook,2011,145-186.
  • 8李慧,胡云,施珺.社会网络环境下的协同推荐方法[J].计算机应用,2013,33(11):3067-3070. 被引量:8
  • 9郭磊,马军,陈竹敏.一种信任关系强度敏感的社会化推荐算法[J].计算机研究与发展,2013,50(9):1805-1813. 被引量:40
  • 10D.D.Tu,C.C.Shu,H.Y.Yu. The Contextual Advertising Recommendation Algorithm Based on Joint Probability Matrix Decomposition[J]. Journal of software,2013, 24(3)454-464.

二级参考文献35

  • 1Ma H, King I, Lyu M. Learning to recommend with social trust ensemble[CJ //Proc of the 32nd ACM Int Conf on Research and Development in Information Retrieval. New York: ACM, 2009: 203-210.
  • 2Ma H, Yang H, Lyu M, et al. Sorce. Social recommendation using probabilistic matrix factorization[CJ I/Proc of the 17th ACM Conf on Information and Knowledge Management. New York: ACM, 2008: 931-940.
  • 3Yeung A C, Iwata T. Strength of social influence in trust networks in product review sites[C] I/Proc of the 4th ACM Int Conf on Web Search and Data Mining. New York: ACM, 2011: 495-504.
  • 4Yang X, Steck H, Liu Y. Circle-based recommendation in online social networks[CJ I/Proc of the 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2013: 1267-1275.
  • 5Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks[CJ I/Proc of the 4th ACM Conf on Recommender Systems. New York: ACM, 2010: 135-142.
  • 6lin R, ChaiJ, Si L. An automatic weighting scheme for collaborative filtering[C] //Proc of the 27th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2004: 337-344.
  • 7Xue G, Lin C, Yang Q, et al. Scalable collaborative filtering using cluster-based smoothing[CJ //Proc of the 28th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2005: 114-121.
  • 8Sarwar B, Karypis G, KonstanJ, et al. Item-based collaborative filtering recommendation algorithms[CJ IIProc of the 10th Int Conf on World Wide Web. New York: ACM, 2001: 285-295.
  • 9CannyJ. Collaborative filtering with privacy via factor analysis[CJ IIProc of the 25th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 2002: 238-245.
  • 10Hofmann T. Collaborative filtering via gaussian probabilistic latent semantic analysis[CJ //Proc of the 26th Annual Int ACM SIGIR Conf on Research and Development in Informaion Retrieval. New York: ACM, 2003: 259-266.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部