期刊文献+

动态系统中粒子群优化算法综述 被引量:7

The Summarization of Particle Swarm Optimization Algorithm in Dynamic System
下载PDF
导出
摘要 粒子群算法是一种群智能随机优化算法,通过粒子间的合作与竞争,寻找优化问题极值,目前被广泛应用于动态优化问题的求解中。对动态系统中粒子群优化算法进行研究,介绍了粒子群算法基本原理、动态系统分类,以及两种动态优化问题的具体表达形式,并阐述了粒子群算法在动态系统中的3种优化方法及其应用。 Particle swarm optimization algorithm is a random population intelligent optimization algorithm, searching optimization problem extrema through cooperation and competition between particles,which has been widely used in dynamic optimization problem. Here mainly introduces the basic principle of particle swarm optimization algorithm, the classification of the dynamic system, two kinds of dynamic optimization problems' specific expression, three kinds of optimization methods and application in dynamic system.
作者 刘秀梅
出处 《软件导刊》 2016年第10期43-46,共4页 Software Guide
关键词 动态系统 粒子群算法 动态优化问题 优化算法 Particle Swarm Optimization Dynamic Optimization Problem Dynamic System Optimization Method
  • 相关文献

参考文献19

  • 1EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Sjmpos- ium on Micro Machine and Human Science, 1995:39-43.
  • 2KENNEDY J,EBERHART R C. Particle swarm optimization[C]. Proc. IEEE Int7 ConJ on Neural Networks,Piscataway,1995:1942- 1948.
  • 3邹毅,朱晓萍,霍龙,赵连学.一种改进的粒子群优化算法及其应用[J].沈阳工程学院学报(自然科学版),2006,2(3):283-286. 被引量:5
  • 4张雪东,赵传信,季一木.一种混合粒子群算法及其在Job Shop问题中的应用[J].计算机技术与发展,2006,16(9):109-111. 被引量:6
  • 5曾万里,危韧勇,陈红玲.基于改进PSO算法的BP神经网络的应用研究[J].计算机技术与发展,2008,18(4):49-51. 被引量:21
  • 6ANGELINE J P. Tracking extrema in dynamic environments[M]. Berlin : Springer-Verlag, 1997 : 335 345.
  • 7BACK T. On the behavior of evolutionary algorithms in dynamic environments[M]. Piscataway IEEE Press, 1998:446-551.
  • 8BRANKE J. Evolutionary optimization in dynamic environments [M]. London: Kluwer Academic Publishers, 2002.
  • 9EBERHART R C, SHI Y. Tracking and optimizing dynamic sys-terns with particle swarms[C]. Seoul: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2001), 2001:94-97.
  • 10MORRISON R W, DEJONG K non-stationary environments[J] putation, 1999(3) .. 2047-2053.

二级参考文献20

  • 1孙红光,潘毓学.基于运动目标路径的粒子群优化算法研究[J].仪器仪表学报,2004,25(z1):946-947. 被引量:3
  • 2熊伟丽,徐保国,周其明.基于改进粒子群算法的PID参数优化方法研究[J].计算机工程,2005,31(24):41-43. 被引量:21
  • 3江涛,张玉芳,王银辉.一种改进的粒子群算法在BP网络中的应用研究[J].计算机科学,2006,33(9):164-165. 被引量:10
  • 4延丽平,曾建潮.具有自适应随机惯性权重的PSO算法[J].计算机工程与设计,2006,27(24):4677-4679. 被引量:13
  • 5[1]Kenedy J,Eberhart R C.Particle Swarm Optimization[ A].International Conference on Neural Networks[ C ].Piscataway:IEEE Press,1995:1942-1948.
  • 6[2]Eberhart R C,Kenedy J.A New Optimizer Using Particle Swarm Theory[A].The Sixth International Symposium on Micro Machine and Human Science[C].Nagoya:IEEE Press,1995:39-43.
  • 7[3]Eberhart R C,Simpson P K,Dobbins R W.Computational Intelligence PC tools[M].Boston:Academic Press Profestional,1996.
  • 8[4]Vanden Bergh.An Analysis of Particle Swarm Optimizers[D].South Africa:Department of Computer Science,University of Pretoria,2002.
  • 9[5]Ye Luqing,Wang Shengtie.Control Maintenance Strategy for Fault Tolerant Mode and Reliability Analysis of Hydro Power Stations[ J].Transactions on Power Engineering,2001.
  • 10[6]Wang Shengtie.Intelligent Networked (N + M) Fault Tolerant System s for Hydro Power Stations[J].International Journal Hydro-electric Energy,1999,17(1).

共引文献26

同被引文献56

引证文献7

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部