期刊文献+

有限体积法定价跳扩散期权模型 被引量:7

Finite Volume Methods for Pricing Jump-Diffusion Option Model
下载PDF
导出
摘要 考虑有限体积法求解Kou模型下美式跳扩散期权.基于线性有限元空间,构造了向后欧拉和Crank-Nicolson两种全离散有限体积格式,并采用简单高效的递推公式对偏微分积分方程中的积分项进行逼近.针对美式期权离散得到的线性互补问题(LCP),采用模超松弛迭代法(MSOR)进行求解,并证明了H_+离散矩阵下算法的收敛性.数值实验表明,所构造的方法是高效而稳健的. Finite volume methods are developed for pricing American options under Kou jump-diffusion model. Based on a linear finite element space, both backward Euler and CrankNicolson full discrete finite volume schemes are constructed. For the approximation of the integral term in the partial integro-differential equation (PIDE), an easy-to-implement recursion formula is employed. Then we propose the modulus- based successive overrelaxation (MSOR) method for the resulting linear complementarity problems (LCPs). The H+ matrix property of the system matrix which guarantees the convergence of the MSOR method is analyzed. Numerical experiments confirm the efficiency and robustness of the proposed methods.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第9期1458-1465,共8页 Journal of Tongji University:Natural Science
基金 国家自然科学基金(11271289) 中央高校基本科研业务费专项资金 云南省应用基础研究计划青年项目(2013FD045) 云南省教育厅科学研究基金项目(2015Y443)
关键词 有限体积法 Kou跳扩散期权模型 线性互补问题 模超松弛迭代法 finite volume method Kou jump-diffusion option model linear complementarity problem modulus-based successive overrelaxation method
  • 相关文献

参考文献22

  • 1Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81(3): 637.
  • 2Merton R C. Option pricing when underlying stock return are discontinuous [J]. Journal of Financial Economics, 1976, 3: 125.
  • 3Kou S G. A jump-diffusion model for option pricing [ J ]. Management Science, 2002, 48(8):1086.
  • 4Kou S G, Wang H. Option pricing under a double exponential jump diffusion model [J]. Management Science, 2004, 50(7) : 1178.
  • 5Tavella D, Randall C. Pricing financial instruments: The finite difference method [M]. Chichester: John Wiley Sons, 2000.
  • 6Andersen L, Andreasen J. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing [J]. Review of Derivatives Research, 2000, 4(3) : 231.
  • 7d:Halluin Y, Forsyth P A, Labahn G. A penalty method for American options with jump diffusion processes [ J ]. Numerische Mathematik, 2004, 97(2) : 321.
  • 8Halluin Y, Forsyth P A, Vetzal K R. Robust numerical methods for contingent claims under jump diffusion processes [J]. IMA Journal of Numerical Analysis, 2005, 25(1). 87.
  • 9Toivanen J. Numerical valuation of European and American options under Kou's jump-diffusion model [J]. SIAM Journal on Scientific Computing, 2008, 30(4): 1949.
  • 10Salmi S, Toivanen J. An iterative method for pricing American options under jump-diffusion model [J]. Applied Numerical Mathematics, 2011, 61(7) 821.

二级参考文献7

共引文献13

同被引文献6

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部