期刊文献+

Cohomology Theories in Triangulated Categories 被引量:1

Cohomology Theories in Triangulated Categories
原文传递
导出
摘要 Let C be a triangulated category with a proper class g of triangles. We prove that there exists an Avramov-Martsinkovsky type exact sequence in g, which connects ε-cohomology, ε-Tate cohomology and ε-Corenstein cohomology. Let C be a triangulated category with a proper class g of triangles. We prove that there exists an Avramov-Martsinkovsky type exact sequence in g, which connects ε-cohomology, ε-Tate cohomology and ε-Corenstein cohomology.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第11期1377-1390,共14页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11401476,11361052,11261050)
关键词 Triangulated categories proper class of triangles cohomology theories Triangulated categories, proper class of triangles, cohomology theories
  • 相关文献

参考文献17

  • 1Asadollahi, J., Salarian, Sh.: Cohomology theories based on Gorenstein injective modules. Trans. Amer. Math. Soc., 358, 2183-2203 (2006).
  • 2Asadollahi, J., Salarian, Sh.: Gorenstein objects in triangulated categories. J. Algebra, 281, 264-286 (2004).
  • 3Asadollahi, J., Salarian, Sh.: Tate cohomology and Gorensteinness for triangulated categories. J. Algebra, 299, 480-502 (2006).
  • 4Auslander, M., Bridger, M.: Stable Module Theory, Mem. Amer. Math. Soc., vo1.94, American Mathemat?ical Society, Providence, R.I., 1969.
  • 5Avramov, L. L., Martsinkovsky, A.: Absolute, relative and Tate cohomology of modules of finite Gorenstein dimensions. Proc. London Math. Soc., 85, 393-440 (2002).
  • 6Beligiannis, A.: Relative homological algebra and purity in triangulated categories. J. Algebra, 227, 268- 361 (2000).
  • 7Christensen, L. W.: Gorenstein Dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000.
  • 8Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z., 220, 611-633 (1995).
  • 9Enochs, E. E., Jenda, O. M. G.: Relative homological algebra, De Gruyter Expositions in Mathematics no. 30, Walter De Gruyter, New York, 2000.
  • 10Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra, 189, 167-193 (2004).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部