摘要
采用Saunders全局优化随机踢球模型与密度泛函理论相结合的方法,在B3LYP/SDD理论水平下研究了锡基原子团簇Snn(n=2-10)及锡基稀土原子钐掺杂团簇SnnSm(n=1-9)的几何结构、稳定性、电子性质和磁性.结果表明,团簇SnnSm(n=1-9)中掺杂的钐原子通常位于主团簇的表面,掺杂团簇的基态结构更倾向于具有较高对称性的三维结构;二元锡基混合团簇的平均结合能变大,稳定性增强,这主要归因于Sn—Sm键比Sn—Sn键的键能大,具有更强的相互作用;掺杂团簇具有较高的磁性,其总磁矩主要源自于钐原子4f电子的贡献;随着团簇尺寸的增加,二元团簇的总磁矩呈现出趋于饱和的现象.
The geometrical structures,relative stabilities,electronic properties and magnetism of tin clusters and bimetallic complexes of tin clusters with one samarium atom SnnSm( n = 1—9) were investigated with the Saunders "Kick"global stochastic search technique combined with density functional theory( DFT) calculations at the B3 LYP / SDD level of theory. The results are as follows:( 1) Samarium atom usually located on the surface in the doped tin-based with one samarium atom clusters. And the ground-state structures of the SnnSm( n =1—9) clusters prefer to three-dimensional structure with higher symmetry;( 2) after doping samarium atom in the Sn-based cluster,the cluster has the increase average binding energy which should owe to the fact that the bonding energy of Sn—Sm bond is higher than Sn—Sn bond and has the stronger interaction;( 3) the doped Sn-based with one samarium atom cluster has large magnetic moments,and the contribution of magnetic moment almost comes from 4f electron orbit of the samarium atom,while the contribution of tin atoms is negligible. With the increase of cluster's size,bimetallic complexes cluster has the special phenomenon that the total magnetic moment tends to be stable.
作者
孙林
王怀谦
吴梦
李慧芳
李孝义
杜丹
沙蕊
SUN Lin WANG Huaiqian WU Meng LI Huifang LI Xiaoyi DU Dan SHA Rui(College of Engineering, Huaqiao University, Quanzhou 362021, China Beijing Computational Science Research Center, Beijing 100094, China Beijing Beiqi Mould & Plastic Technology Co. Ltd. , Beijing 102606, China)
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
2016年第10期1840-1848,共9页
Chemical Journal of Chinese Universities
基金
福建省高校新世纪优秀人才支持计划项目(批准号:2014FJ-NCET-ZR07)
福建省高校杰出青年科研人才培育计划项目(批准号:JA13009)
福建省自然科学基金(批准号:2014J05006)资助~~
关键词
原子团簇
密度泛函理论
磁矩
踢球模型
Atomic cluster
Density functional theory
Magnetic moment
Kick model