期刊文献+

基于共同属性和标签共现的标签消歧算法

Tag disambiguation model based on common attribute and tag co-occurrence
下载PDF
导出
摘要 为了提高基于标签的个性化推荐技术的准确率,提出了一种基于共同属性和标签共现的标签消歧模型,对已有的基于聚类的标签消歧算法进行改进,针对不同的标签语义问题分别采用不同的方法,缓解了原算法不能识别不同语义的问题。对于多义词语义问题,使用同义词模型进行消歧;对于近义词、同义词语义问题,使用近、同义词模型进行消歧,并将该模型应用于个性化推荐算法。利用公共数据集MovieLens Latest Datasets进行了个性化推荐实验。实验表明,当用户推荐项目数量递增时,推荐算法的准确率和召回率都有提高,能有效消除标签中存在的歧义。 To improve the accuracy of personalized recommendation technology based on the label, disambiguation algorithm was put forward based on the common properties and tag the co-occurrence. The existing label disambiguation method based on clustering was improved. Based on semantic problems for different labels in algorithm, different methods of disambiguation were adopted, makes the algorithm does not recognize different semantic. Synonyms disambiguation algorithm was used to solve the problem of polysemous word semantic disambiguation; For synonym with semantic problems, synonyms and near synonyms disambiguation algorithm was used, and the algorithm was applied in the personalized recommendation algorithm. Public data sets Movielens Latest were used to conduct personalized recommendation experiments, which show disambiguation model can effectively improve the recommendation accuracy.
作者 宋友平 王家宝 苗壮 SONG Youping WANG Jiabao MIAO Zhuang(College of Command Information Systems, PLA Univ. of Sci. & Tech., Nanjing 210007, China)
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2016年第5期409-412,共4页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 江苏省自然科学基金资助项目(BK2012512)
关键词 个性化推荐 标签消歧 标签共现 共同属性 personal recommendation tag disambiguation tag co-occurrence common attribute
  • 相关文献

参考文献11

  • 1JABEEN F,KHUSRO S, MAJID A.Semantics discov- ery in social tagging systems[C]//Proceedings of the 27th Annual ACM Symposium on Applied Computing. New York.. Edinburgh University Press, 2012 : 37-47.
  • 2WEINBEIGER K,SLANEY M, ZWO R. Resolving Tag Ambiguity [EB/OL]. (2008-11-15) [2008-12-20]. http: / / research. Yahoo. corn/files/ct- fp6043-weinbeiger, pdf.
  • 3CHEN Junpeng, FENG Shuai,LIU Jun. Topic sense induction from social tags based on non-negative ma- trix factorization[C]//Proceeding of the 12th associa- tion for computing machinery. New York: Association for Computing Machinery Press, 2011:157-166.
  • 4ANAND D,BHARADWAJ K K. Utilizing various sparsity measures for enhancing accuracy of collabora- tive recommendation systems based on local and global similarities [J]. Expert Systems with Applications an International Journal. 2011,38(5) :5101-5109.
  • 5KIM H N, E1-SADDIK A,JO G. Collaborative error- reflected models for cold-start recommendation sys- tems[J].Decision Support Systems, 2011,51 (3) .. 519- 531.
  • 6PATRA B K,LAUNONEN R, OLLIKAINEN V, et al. Exploiting bhattacharyya similarity measure to di- minish user cold-start problem in sparse data[C]// Proceedings of 17th International Conference Discovery Science. Washington DC.. Springer International Pub- lishing, 2014 .. 252-263.
  • 7KOREN Y. Factor in the neighbors: scalable and accu- rate collaborative filtering, ACM Trans[J]. Knowl- edge Discovery, 2010,4(1) .. 1-24.
  • 8LIU Haifeng, HU Zheng, MIAN A, et al.A new user similarity model to improve the accuracy of collabora- tive filtering [ J ]. Knowledge Based System, 2014, 56 (3) ..156-166.
  • 9MIKA P. Ontologies are Us.. a unified model of social networks and semantics[C]//4th International Seman- tic Web Conference, ISWC 2005. Galuay.. Springer, 2005 522-536.
  • 10HANASAKI M, MATSUO Y,NISHINURA T, et al. Ontlogy Extraction by Collaborative Tagging with So- cial Networking [ EB/OL]. (2008-03-25) [2015-09- 02].http://ymatsuo.com/papers/www2008hama.pdf.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部