期刊文献+

温度和pH对生物成因羟基硫酸铁矿物的综合影响研究 被引量:9

Effects of temperature and pH on the formation of biogenic Fe(Ⅲ) hydroxysulfate precipitates
原文传递
导出
摘要 在酸性矿山废水中,氧化亚铁硫杆菌(A.ferrooxidans)氧化Fe^(2+)过程中常常伴随着次生矿物的生成.为研究温度和pH对A.ferrooxidans氧化Fe^(2+)及Fe3+水解成矿的综合影响,考察了初始pH为1.5、2.0、2.5、3.0,温度为8、18、28、38℃时体系中Fe^(2+)、总Fe、次生矿物的变化情况.结果表明,在改良9K培养基中,温度和pH均影响Fe^(2+)生物氧化和Fe^(3+)水解成矿.A.ferrooxidans最佳适宜生长环境为温度28℃,pH=2.0~3.0,其它条件均不利于其生长繁殖,导致Fe^(2+)氧化速度明显变慢.起始pH=1.5时,不同温度处理均未发现有矿物生成,pH越高,收集矿物量越多.次生铁矿物XRD图谱表明,反应温度为28℃时,pH=2.0~2.5条件下次生铁矿物主要为黄铁矾和施氏矿物的混合物,而pH=3.0时则更有利于施氏矿物的形成.该现象对有效调控次生矿物的形成具有潜在意义. To illustrate the effect of temperature and pH on the biooxidation of Fe^(2+)and the formation of secondary iron minerals,Fe^(2+),total iron,and newly-formed mineral phase were observed at the different initial pH values of 1. 5,2. 0,2. 5,3. 0,and different temperature of 8,18,28 and 38 ℃. The results show that A.ferrooxidans oxidized Fe^(2+)fast at the optimal condition of 28 ℃ and pH 2.0 ~ 3.0. The oxidation rate of Fe^(2+)was significantly slower under other conditions.Furthermore,initial pH would affect the mass and phase of biogenic secondary iron mineral. The higher of initial pH,the more mineral amount collected.The XRD patterns show that the formed iron mineral was a mixture of jarosite and schwertmannite at 28 ℃ and pH 2.0 ~ 2.5,but the initial pH 3.0 were more conducive to the formation of schwertmannite. This phenomenon has potential implications for the effective regulation of the formation of secondary minerals.
出处 《环境科学学报》 CAS CSCD 北大核心 2016年第10期3683-3690,共8页 Acta Scientiae Circumstantiae
基金 国家自然科学基金(No.21277071 41371476)~~
关键词 温度 PH 氧化亚铁硫杆菌 次生矿物 黄铁矾 施氏矿物 temperature pH A ferrooxidans secondary iron mineral jarosite schwertmannite
  • 相关文献

参考文献40

  • 1柏双友,梁剑茹,王敏,周立祥.Fe(Ⅲ)供应速率对无定型施氏矿物形成的影响[J].矿物学报,2011,31(2):256-262. 被引量:5
  • 2柏双友,梁剑茹,周立祥.FeSO_4-K_2SO_4-H_2O体系中Fe/K摩尔比对生物成因羟基硫酸铁矿物质量的影响及环境意义[J].环境科学学报,2010,30(8):1601-1607. 被引量:20
  • 3Bai S Y,Xu Z H,Wang M,et al. 2012. Both initial concentrations of Fe (11) and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[ J ]. Materials Sciences and Engineering C, 32 ( 8 ) : 2323-2329.
  • 4Bang S, Patel M, Lippineott L, et al. 2005. Removal of arsenic from groundwater by granular titanium dioxide adsorbent [ J ]. Chemosphere,60 : 389-397.
  • 5Barham R J. 1997. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate[ J] .Jorunal of Materials Research, 12 (10) : 2751-2758.
  • 6Daoud J, Karamanev D. 2006. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans [ J ]. Minerals Engineering, 19 ( 9 ) : 960-967.
  • 7Dold B. 2003. Dissolution kinetics of schwertmannite and ferrihydrite inoxidized mine samples and their detection by differential X-ray diffraction ( DXRD ) [ J ]. Applied Geochemistry, 18 ( 10 ) : 1531-1540.
  • 8Dutrizac J E. 1996. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite [ J ]. Hydrometallurgy, 42 : 293-312.
  • 9Elgersma F, Witkamp G J, Van Rosmalen G M. 1993. Simultaneous dissolution of zinc ferrite and precipitation of ammonium jarosite [ J ]. Hydrometallurgy, 34 : 23-47.
  • 10G6mez J M, Cantero D, Webb C. 2000. Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulphate oxidation [ J] .Appl Microbiol Biotechno1,54 : 335-340.

二级参考文献122

共引文献146

同被引文献107

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部