期刊文献+

快速在线主动学习的图像自动分割算法 被引量:3

Image Automatic Segmentation Based on Fast Online Active Learning
下载PDF
导出
摘要 提出经前馈神经网络快速在线学习、构建像素分类模型进行图像分割的算法.首先利用谱残差法计算像素显著度,通过对少数高显著度点的分布进行多尺度分析,获得符合人眼视觉特性的显著图和注视区域.然后从注视区域和非注视区域随机抽样构成由正负样本像素组成的训练集,在线训练一个两分类的随机权前馈神经网络模型.最后使用该模型分类全图像素,实现图像分割.实验表明,文中算法在谱残差法基础上提升对图像中显著目标的分割性能,分割结果与人类视觉感知匹配度较好. An algorithm for image segmentation is proposed by building a pixels classification model. The model is trained online fast with a feed-forward neural network. Firstly, saliency map is computed by spectral residual ( SR) approach. Then, multi-scale analysis is conducted via dispersion of minority high saliency points, and saliency map and gaze areas highly matching with human visual system are obtained. Next, positive and negative samples are selected randomly from saliency and non-saliency regions to compose the training set. A two-class random weighted feed-forward neural network model is trained. Finally, whole image pixels are classified by this model, and image segmentation is realized. Experiments show that the proposed algorithm enhances the segmentation performance for salient object grounded on the spectral residual based method, and the segmentation results are close to human visual perception.
作者 严静 潘晨 殷海兵 YAN Jing PAN Chen YIN Haibing(College of Information Engineering, China Jiliang University, HangZhou 310018)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第9期816-824,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61572449) 浙江省自然科学基金项目(No.LY13F010004)资助~~
关键词 图像分割 显著性检测 随机权前馈神经网络 Image Segmentation Saliency Detection Random Weighted Feed-Forward Neural Network
  • 相关文献

参考文献12

  • 1YU Z W, WONG H S, WEN G H. A Modified Support Vector Machine and Its Application to Image Segmentation.Image and Vision Computing, 2011, 29(1): 29-40.
  • 2PAN C, PARK D S, LU H J, et al. Color Image Segmentation by Fixation-Based Active Learning with ELM. Soft Computing, 2012, 16(9): 1569-1584.
  • 3PAN C, PARK D S, YANG Y, et al. Leukocyte Image Segmentation by Visual Attention and Extreme Learning Machine. Neural Computing and Applications. 2012, 21(6): 1217-1227.
  • 4WU Z F, HUANG Y Z, YU Y N, et al. Early Hierarchical Contexts Learned by Convolutional Networks for Image Segmentation // Proc of the 22nd International Conference on Pattern Recognition. Stockholm, USA: IEEE, 2014: 1538-1543.
  • 5BORJI A, ITTI L. State-of-the-Art in Visual Attention Modeling. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.
  • 6BORJI A, SIHITE D N, ITTI L. Salient Object Detection: A Benchmark // Proc of the 12th European Conference on Computer Vision. Berlin, Germany: Spring-Verlag, 2012, II: 414-429.
  • 7HOU X D, ZHANG L Q. Saliency Detection: A Spectral Residual Approach // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007.DOI:10.1109/CVPR.2007.383267.
  • 8ZHAO J W, ZHOU Z H, CAO F L. Human Face Recognition Based on Ensemble of Polyharmonic Extreme Learning Machine. Neural Computing and Applications, 2014, 24(6): 1317-1326.
  • 9GUO C L, MA Q, ZHANG L M. Spatio-Temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. DOI:10.1109/CVPR.2008.4587715.
  • 10GOFERMAN S, ZELNIK-MANOR L, TAL A. Context-Aware Saliency Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926.

同被引文献8

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部