期刊文献+

基于l^1范数和k近邻叠加图的半监督分类算法 被引量:2

Semi-supervised Classification Algorithm Based on l^1-Norm and KNN Superposition Graph
下载PDF
导出
摘要 为了构造一个能够较好反映数据真实分布的图以提高分类性能,文中提出基于l1范数和k近邻叠加图的半监督分类算法.首先构造一个l1范数图,作为主图,然后构造一个k近邻图,作为辅图,最后将二者按一定比例叠加,得到l1范数和k近邻叠加(LNKNNS)图.实验中选择标记样本比例从5%到25%,将基于LNKNNS图的半监督分类算法在USPS数据库上对比其它图(指数权重图、k近邻图、低秩表示图和l1范数图)的算法.实验表明,文中算法的分类识别率更高,更适合基于图的半监督学习. A framework is proposed to construct a graph revealing the intrinsic structure of the data and improve the classification accuracy. In this framework, a l1-norm graph is constructed as the main graph and ak nearest neighbor ( KNN ) graph is constructed as auxiliary graph. Then, the l1-norm and KNN superposition ( LNKNNS ) graph is achieved as the weighted sum of the l1-norm graph and the KNN graph. The classification performance of LNKNNS-graph is compared with that of other graphs on USPS database, such as exp-weighted graph, KNNgraph, low rank graph and l1-norm graph, and 5% to 25%of the labeled samples are selected in experiments. Experimental results show that the classification accuracy of LNKNNS-graph algorithm is higher than that of other algorithms and the proposed framework is suitable for graph-based semi-supervised learning.
作者 张云斌 张春梅 周千琪 戴模 ZHANG Yunbin ZHANG Chunmei ZHOU Qianqian DAI Mo(College of Computer Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 Universitg Michel de Montaigne-Bordeaux 3, Bordeaux 33607 Pessac Cedex, France)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第9期850-855,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61461002) 北方民族大学研究生创新项目(No.ycx1556)资助~~
关键词 半监督分类 L1 范数图 k近邻图 k近邻叠加图 Semi-supervised Classification l1-Norm Graph k Nearest Neighbor ( KNN ) Graph k Nearest Neighbor Superposition Graph
  • 相关文献

参考文献12

  • 1ZHU X J, GOLDBERG A B, BRACHMAN R, et al. Introduction to Semi-supervised Learning. San Rafael, USA: Morgan and Claypool Publishers, 2009.
  • 2Zhu X J. Semi-supervised Learning // SAMMUT C, WEBB G I, eds. Encyclopedia of Machine Learning. Cambridge, USA: Springer, 2011.
  • 3LIU W, HE J F, CHANG S F. Large Graph Construction for Sca-lable Semi-supervised Learning // Proc of the 27th International Conference on Machine Learning. Madison, USA: Omnipress, 2010: 679-686.
  • 4CHEN K, WANG S H. Semi-supervised Learning via Regularized Boosting Working on Multiple Semi-supervised Assumptions. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 33(1): 129-143.
  • 5JEBARA T, WANG J, CHANG S F. Graph Construction and b-Matching for Semi-supervised Learning // Proc of the 26th International Conference on Machine Learning. Madison, USA: Omnipress, 2009: 441-448.
  • 6ZHUANG L S, GAO H Y, LIN Z C, et al. Non-negative Low Rank and Sparse Graph for Semi-supervised Learning // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012: 2328-2335.
  • 7CHENG B, YANG J C, YAN S C, et al. Learning with l1-Graph for Image Analysis. IEEE Trans on Image Processing, 2010, 19(4): 858-866.
  • 8LIU G C, LIN Z C, YU Y. Robust Subspace Segmentation by Low-Rank Representation // Proc of the 27th International Conference on Machine Learning. Madison, USA: Omnipress, 2010: 663-670.
  • 9ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with Local and Global Consistency // THRUN S, SAUL L K, SCHLKOPF B, eds. Advances in Neural Information Processing Systems 16. Cambridge, USA: MIT Press, 2004: 321-328.
  • 10HAN S C, HUANG H, QIN H, et al. Locality-Preserving L1-Graph and Its Application in Clustering // Proc of the 30th Annual ACM Symposium on Applied Computing. New York, USA: ACM, 2015: 813-818.

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部