期刊文献+

不同锂源对LiNi_(0.5)Mn_(1.5)O_4微观结构及电化学性能的影响 被引量:1

Comparative Study of Cathode Material LiNi_(0.5)Mn_(1.5)O_4 Derived from Different Li Source:Microstructure and Electrochemical Performance
原文传递
导出
摘要 利用共沉淀法制备了前驱体Ni_(0.25)Mn_(0.75)(OH)_2,分别以LiOH和Li_2CO_3为锂源制备了LiNi_(0.5)Mn_(1.5)O_4(LNMO),比较了2种锂源制备的LNMO的理化性质、晶体结构及电化学性能。结果表明:以2种锂源制备的LNMO具有不同的晶体结构,分别属于不同的空间群;以Li_2CO_3制备的LNMO具有更小的比表面积、更大的一次晶粒及更大的晶胞参数;二者初次放电比容量及循环性能接近,但是以Li_2CO_3制备的LNMO具有更加优异的倍率性能。 Cathode materials LiNi0.5Mn1.5O4 were prepared with two different lithium sources using Ni0.25Mn0.75(OH)2a as a precursor synthesized by a co–precipitation method. The physicochemical characteristics, structures and electrochemical performances for these LiNi0.5Mn1.5O4 (LNMO) materials were investigated. The experimental results indicate that the crystal structures of LNMO belong to different space groups for the use of different lithium sources. Compared to the use of LiOH, LNMO synthesized with Li2CO3 presents a a small specific surface area, a great grain size and large unit cell parameters. Although the similar initial discharging capacity and cycling performance for the LNMO samples, the high rate performance of LNMO with Li2CO3 is superior to that with LiOH.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第10期1409-1414,共6页 Journal of The Chinese Ceramic Society
基金 浙江省博士后基金项目(BSH1402012) 浙江省教育厅基金项目(Y200805895)
关键词 LINI0.5MN1.5O4 结构 倍率性能 氧空位 lithium nickel manganese oxide microstructure rate performance oxygen vacancies
  • 相关文献

参考文献19

  • 1BRUCE P G~ SCROSATI, B, TARASCON, J M, et al. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed, 2008(16), 47: 2930-2946.
  • 2PARK J S, ROH K C, et al. Structurally stabilized LiNi0.sMnl.sO4 with enhanced electrochemical properties through nitric acid treatment[J]. J Power Sources, 2013, 230: 138-142.
  • 3MANTHIRAM A, CHEMELEWSKI K, LEE E S. A perspective on the high-voltage LiNi0.sMnl.504 spinel cathode for lithium-ion batteries[J]. Energy Environ Sci, 2014, 7: 1339-1350.
  • 4LEE Eu, PERSSON K A. Solid-solution Li intercalation as a function of cation order-disorder in the high-voltage LixNi0.sMnLsO4 spinel[J]. Chem Mater, 2013, 25(14): 2885-2889.
  • 5WEI K P, NEERAJ S, PETERSON VK, et al. In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi0.5Mnl.504 cathode and a Li4TisO12 anode in a LiNi0.sM-nl.504/ /Li4TisO12 full cell[J]. J Power Sources, 2014, 246: 464-472.
  • 6ZHENG J, XIAO J, NIE Z, et al. Lattice Mn3+ behaviors in Li4TisO12/ /LiNi0.sMnl.sO4 full cells[J]. J Electrochem Soc, 2013, 160(8): A1264-A1268.
  • 7LEE ES, Nam K W, et al. Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiNi0.~MnLsO4 spinel between 5.0 and 2.0 V[J]. Chem Mater, 2012, 24(18): 3610-3620.
  • 8ZHOU L, ZHAO D, et al. LiNi0.sMnl.504 hollow structures as high-performance cathodes for lithium-ion batteries[J]. Angew Chem Int Ed, 2012, 51(1): 239-241.
  • 9FANGH ,WANG Z, et al. High performance LiNi0.sMni.sO4 cathode materials synthesizcd by a combinational annealing method[J]. Electrochem Commun, 2007, 9(5): 1077-1082.
  • 10XIAOJ, CHEN X, SUSHKO P V, et al. High-performance LiNi0.sMnLsO4 spinel controlled by Mn3+ concentration and site disorder[J]. Adv Mater, 2012, 24(16): 2109-2116.

二级参考文献5

共引文献14

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部