期刊文献+

非晶态中空ZnSnO_3立方体的制备及其电化学性能 被引量:1

Synthesis and Electrochemical Performance of Amorphous ZnSnO_3 Hollow Cubes
原文传递
导出
摘要 采用碱蚀刻-热解法制备了无定形中空ZnSnO_3立方体,并利用X射线衍射、扫描电子显微镜、透射电子显微镜、热重分析、N_2吸附-脱附曲线、循环伏安和恒流充放电技术对样品的结构、形貌及电化学性能进行表征。结果表明:所制备的ZnSnO_3呈边长约为1μm的无定型中空立方体。作为锂电池负极材料,在100 m A/g电流密度下,首次放电容量高达1 591 m A·h/g,50次循环后放电容量保持在305 m A·h/g。无定形中空ZnSnO_3立方体良好的电化学性能可归因于无定形态及有效缓冲了锂离子嵌入-脱嵌过程引起的体积变化的中空结构。 The amorphous ZnSnO3 hollow cubes were synthesized via a facile alkali etching and a subsequent pyrolysis method. The structure, morphology and electrochemical properties of samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermal gravimetric analysis, N2 adsorption-desorption curves, cyclic voltametry and galvanostatic charge-discharge measurements, respectively. The results indicate the ZnSnO3 as-synthesized exists in amorphous state, and shows the hollow cube structure with the average edge size of approximately 1 pan. As an anode material for lithium-ion batteries, ZnSnO3 hollow cubes exhibit a large specific capacity of 1 591 mA·h/g in initial discharge, and retains 305 mA·h/g after 50 cycles at 100 mA/g current. The excellent electrochemical performances are attributed to the amorphous state and hollow structure that accommodate the large volume change during the Li^+ insertion-extraction process.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2016年第10期1421-1427,共7页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金项目(21373189) 河南省重点科技攻关项目(142102210421)
关键词 偏锡酸锌 中空结构 碱蚀刻 负极材料 锂离子电池 ZnSnO3 hollow structure alkali etching anode material lithium-ion batteries
  • 相关文献

参考文献20

  • 1POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407(6803): 496-499.
  • 2SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. J Power Sources, 2010, 195(9): 2419-2430.
  • 3WANG Y, LI H, HE P, et al. Nano active materials for lithium-ion batteries[J]. Nanoscale, 2010, 2(8): 1294-1305.
  • 4庞春会,吴川,吴锋,白莹,陈实.锂离子电池纳米正极材料合成方法研究进展[J].硅酸盐学报,2012,40(2):247-255. 被引量:9
  • 5PANG Chunhui, WU Chuan, WU Feng, et al. J Chin Ceram Soc, 2012, 40(2): 247-255.
  • 6LIAN P, WANG J, CAI D, et al. Porous SnO,@C/grapbene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries[J]. Electrochim Acta, 2014, 116(2): 103-110.
  • 7CHEN L, WANG Z, HE C, et al. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2013, 5(19): 9537-9545.
  • 8HAN F, LI W C, LEI C, et al. Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as high-capacity lithium-ion battery[J]. Small, 2014, 10(13): 2637-2644.
  • 9QIN Y L, ZHANG F F, DU X C, et al. Controllable synthesis of cube-like ZnSnO3@TiO2 nanostructures as lithium ion battery anodes[J]. J Mater Chem A, 2015, 3(6): 2985-2990.
  • 10MOHAMEDI M, LEE S J, TAKAHASHI D, et al. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries[J]. Electrochim Acta, 2001, 46(8): 1161-1168.

二级参考文献18

共引文献8

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部