期刊文献+

因变量缺失下部分线性可加模型的估计和检验(英文)

Estimation and Testing for Partially Linear Additive Model with Missing Responses at Random
下载PDF
导出
摘要 本文研究部分线性可加模型在因变量存在缺失情形下的统计推断问题.首先基于完整数据方法提出了参数分量的Profile最小二乘估计并证明估计量的渐近正态性.为了给出参数分量的区间估计,构造了渐近分布为卡方分布的经验似然统计量.为了检验参数分量的线性约束条件,构造了调整的广义似然比检验统计量,当原假设成立时其渐近分布为卡方分布,从而将广义似然比检验推广到了缺失数据情形.最后通过数值模拟验证所提方法的有效性. This paper considers statistical inference for the partially linear additive model with missing responses at random. We propose a profile least-squares estimator for the parametric component with complete-case data, and show that the resulting estimator is asymptotically normal. To construct a confidence region for the parametric component, we propose an empirical-likelihood-based statistic, which is shown to have a chi-squared distribution asymptotically. To check the validity of the linear constraints on the parametric component, we construct a modified generalized likelihood ratio to test statistic and to demonstrate that it follows asymptotically chi-squared distribution under the null hypothesis. Then, we extend the generalized likelihood ratio technique to the context of missing data. F^rthermore, simulation study is conducted to illustrate the performance of the proposed methods.
作者 魏传华 郭双
出处 《应用数学》 CSCD 北大核心 2016年第4期797-808,共12页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11301565)
关键词 BACKFITTING 置信区间 经验似然 部分线性可加模型 缺失数据 Backfitting Confidence region Empirical likelihood Partially linearadditive model Missing data
  • 相关文献

参考文献20

  • 1Friedman J H, Stuetzle W. Projection pursuit regression[J]. Journal of American Statistical Assoca- tion, 1981, 76: 817-823.
  • 2Hastie T J, Tibshirani R. Generalized Additive Models[M]. New York: Chapman and Hall. 1990.
  • 3Opsomer J D, Ruppert D. A root-n consistent backfitting estimator for semiparametric additive modelling[J]. Journal of Computational and Graphical Statistics, 1999, 8: 715-732.
  • 4LI Q. Efficient estimation of additive partially linear models[J]. International Economic Reviews, 2002, 41: 1073-1092.
  • 5Manzana S, Zeromb D. Kernel estimation of a partially linear additive model[J]. Statistics and Prob- ability Letters, 2005, 72: 313-322.
  • 6LIANG H, Thurston S, Ruppert D, Apanasovich T. Additive partial linear models with measurement errors[J]. Biometrika, 2008, 95: 667-678.
  • 7WEI C H, LIU C L. Statistical inference on semiparametric partially linear additive models[J]. Journal of Nonparametric Statistic, 2012, 24: 809-823.
  • 8CHENG P E. Nonparametric estimation of mean functionals with data missing at random[J]. Journal of American Statistical Assocation, 1994, 89: 81-87.
  • 9CHU C K, CHENG P E. Nonparametric regression estimation with missing data[J]. Journal of Sta- tistical Planning and Inference, 1995, 48: 85-99.
  • 10WANG Q H, Lindon O, Hardle W. Semiparametric regression analysis with missing response at random[J]. Journal of American Statistical Assocation, 2004, 99: 334-345.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部