期刊文献+

克服腔QED中比特反转错误的无退相干子空间量子计算

Quantum computation in decoherence-free subspaces for overcoming bit-flip error in cavity QED
下载PDF
导出
摘要 用无退相干子空间的方法抑制集体退相干,实现不受比特反转错误影响的通用量子计算.该方案基于腔电动力学系统,用囚禁于腔中的2个相邻原子编码1个逻辑比特,构造出抑制集体比特反转错误的4维无退相干子空间.通过调节外加光场与腔的耦合,在无退相干子空间中完成了2个非对易的单比特操作和控制相位门,实现了克服集体比特反转错误的通用量子计算。 Universal quantum computation overcoming influnce of bit-flip error is realized by suppressing collective decoherence with decoherence-free subspace method.The scheme is based on cavity QED system.A logical bit is encoded by two adjacent atoms trapped in a cavity,and a four-dimensional decoherence-free subspace is constructed to suppress the collective bit reversal error.By adjusting the coupling between the external optical field and cavity,two noncommutative single-qubit operations and a controlled phase gate are implemented in decoherence-free subspace.Universal quantum computation overcoming the collective bit reversal error is realized.
出处 《量子电子学报》 CAS CSCD 北大核心 2016年第5期553-560,共8页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金 11074079 11374318~~
关键词 量子光学 通用量子计算 无退相干子空间 比特反转错误 quantum optics universal quantum computation decoherence-free subspace bit-flip error
  • 相关文献

参考文献28

  • 1Shor P W. Polynomial-time algorithms for prime faztorization and discrete logarithms on a quantum computer [J]. SIAM J. Sci. Statist. Comput., 1997, 26(5): 1484-1509.
  • 2Grover L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Left., 1997, 79(2): 325-328.
  • 3Bennett C H, Brassard G, Cr@peau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Left., 1993, 70(13): 1895-1899.
  • 4Bennett C H, Shor P W. Quantum information theory [J]. IEEE Trans. In/orm. Theory, 1998, 44(6): 2724-2742.
  • 5Chuang I L, Yamamoto Y. Simple quantum computer [J]. Phys. Rev..4, 1995, 52(5): 3489-3496.
  • 6Veis L, Visnak J, Fleig T, et al. Relativistic quantum chemistry on quantum computers [J]. Phys. Rev. A, 2012, 85(3): 030304.
  • 7Lidar D A, Chuang I L, Whaley K B. Decoherence-free subspaces for quantum computation [J]. Phys. Rev. Left., 1998, 81(12): 2594-2597.
  • 8Shor P W. Scheme for reducing decoherence in quantum computer memory [J]. Phys. Rev. A, 1995, 52 (4): R2493-R2496.
  • 9Steane A M. Error correcting codes in quantum theory [J]. Phys. Rev. Left., 1996, 77(5): 793-797.
  • 10Knill E, Laflamme R. Theory of quantum error-correcting codes [J]. Phys. Rev. A, 1997, 55(2): 900-911.

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部