期刊文献+

具有飞沫和直接接触感染的传染病模型分析 被引量:1

Analysis of an Epidemic Model through Droplet Infection and Direct Contact
下载PDF
导出
摘要 考虑由飞沫传染和直接接触引发的传染病,建立了具有非线性接触率和非线性治愈率的脉冲时滞SIRS传染病模型.定义了两个正数R1和R2,并且证明了当R1<1时,系统的无病周期解是全局吸引的,当R2>1时系统持久.最后利用数值模拟验证了主要结论. A disease spreaded by droplet infection and direct contact was considered. And a delayed epi-demic model was established with pulse vaccination and nonlinear transmission nonlinear cure rate. Two positive numbers R1 and R2 were defined. It was proved that there was an infection-free periodic solution which was globally attractive if R1 〈1and the disease was permanent if R2 〉1. Finally, numerical simula-tions were presented to support our main results.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2016年第3期10-15,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 山西省自然科学基金资助项目(2013011002-2)
关键词 飞沫传染 脉冲接种 灭绝 持久 droplet infection pulse vaccination extinction permanence
  • 相关文献

参考文献9

  • 1SAMANTA G P , Ricardo G6mez Aiza. Analysis of a delayed epidemic model of diseases through droplet infection and direct contact with pulse vaccination[J]. Int J Dynam Control, 2015,3 (3) :1 -13.
  • 2SUNITA G, KULDEEP N. Pulse vaccination in SIRS epidemic model with non-monotonic incidence rate [ J ]. Chaos solution fractals, 2008, 35 (3) : 626 - 638.
  • 3GAO S J, CHEN L S, NIETO J J, et al. Analysis of a delayed epidemic model with pulse vaccination and saturation incidence [ J ]. Vaccine, 2006, 24 (35/36) : 6037 - 6045.
  • 4吴燕兰,黄文韬,吴岱芩.一类具有脉冲免疫的时滞SIRS传染病模型的全局分析[J].郑州大学学报(理学版),2015,47(3):43-48. 被引量:1
  • 5郑丽丽,王娟.一类具有非线性发生率的病毒动力学模型分析(英文)[J].信阳师范学院学报(自然科学版),2013,26(4):481-484. 被引量:3
  • 6RUANS,WANG W. Dynamical behavior of an epidemical models with a nonlinear incidence rates [ J ]. Journal of differential equations, 1987, 25 (4): 359- 380.
  • 7ZHOU L H, FAN M. Dynamic of a SIR epidemic model with limited medical resources revisited [ J ]. Nonlinear analysis real world application, 2012, 13 ( 1 ) :312 - 324.
  • 8GAO S J, CHEN L S, TENG Z D. Pulse vaccination of an SEIR model with time delay[ J ]. Nonlinear analysis real world appli- cation, 2008, 9(2) :599 -607.
  • 9KUANG Y. Delay differential equations: with applications in population dynamics[ M ]. New York:Academic Press, 1993.

二级参考文献18

  • 1Regoes R R, Wodarz D, Nowak M A. Virus dynamics z the effect of target cell limitation and immune responses on virus evolution[J]. J Theor Biol, 2010,191:451-462.
  • 2Alizon S, Lion S. Within-host parasite cooperation and the evolution of virulence[J]. Proc R Soc B, 20il ,278 : 3738-3747.
  • 3Debroy S, Bolker B, Martcheva M. Bistability and long-term cure in a within-host of Hepatitis C[J], J Biol Systems, 2011,19 (4) :533-550.
  • 4Nowak M A, Bonhoeffer S, Hill A M, et al. Viral dynamics in hepatitis B virus infection[J], Proc Nati Acad Sci USA, 1996,93 : 43984409,.
  • 5Verotta D, Sohaedeli F. Non-linear dynamics models characterizing long-term virological data from AIDS clinical trials[J]. Math Biosci, 2002, 176:163-170.
  • 6Perelson A S, Kirschner D E, De Boer R. Dynamics of HIV infection of CD4^+ T cells [J], Math Biosci, 1993, 114 : 81-89.
  • 7D' Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model [ J ]. Mathematical Biosciences, 2002, 179(1) :57 -72.
  • 8Li Jianquan, Ma Zhien. Qualitative analyses of sisepidemic model with vaccination and varying total population size [ J ]. Math- Computer Modelling, 2002, 35 : 1235 - 1243.
  • 9Meng Xinzhu, Chen Lansun, Song Zhitao. The dynamics of a SEIR epidemic model concerning pulse vaccination strategy[ J]. Applied Mathematics and Computation, 2007, 28(9) : 1123 -1134.
  • 10Van den Driessche P, Watmough J. A simple SIS epidemic model with backward bifurcation[ J]. Journal of Mathematical Biolo- gy, 2000, 40(6):525-540.

共引文献2

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部