期刊文献+

基于多尺度方法的1∶3共振双Hopf分岔分析

Analysis of 1∶3 Resonant Double Hopf Bifurcation by Using the Method of Multiple Scales
下载PDF
导出
摘要 利用改进的多尺度方法对一个电路振子模型1∶3共振附近的动力学行为进行了研究.应用该方法得到了系统的复振幅方程,进而得到一个振幅与相位解耦的三维实振幅系统,通过分析实振幅方程的平衡点个数及其稳定性,将系统共振点附近的动力学行为进行分类,发现了双稳态等动力学现象,数值模拟验证了理论结果的正确性. The dynamical behavior near a 1∶3 resonance of an electric oscillator was investigated. By using the method of multiple scale, the complex amplitude equations of the system were obtained. Then a three dimension real amplitude system in which the amplitudes decouple from the phases was given. Ana-lyzing the number of equilibrium and its stability of the real amplitude equation, the dynamical behavior around the resonant point was classified. Some interesting dynamical phenomenon were found, for exam-ple,the bistability. Numerical simulations for justifying the theoretical analysis were also provided.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2016年第3期23-27,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11302072) 河南省科技厅资助项目(112300410194) 河南教育厅资助项目(12B120004) 郑州市科技局资助项目(20141391)
关键词 电路振子 1∶3共振 多尺度方法 分岔 electric oscillator 1∶3 resonance the method of multiple scale bifurcation
  • 相关文献

参考文献13

  • 1LACARBONARA W, REGA G, NAYFEH A H. Resonant non-linear normal modes. Part I:analytical treatment for structural one- dimensional systems [ J ]. Int J Non-linear Mech,2003,38 (6) : 851 - 872.
  • 2LEE C L, PERKINS N C. Nonlinear oscillations of suspended cables containing a two-to-one internal resonance [ J ]. Nonlinear Dyn, 1992,3 (6) :465 - 490.
  • 3王万永,陈丽娟.非线性时滞反馈对共振附近动力学行为的影响[J].信阳师范学院学报(自然科学版),2014,27(1):15-18. 被引量:2
  • 4JI J C, ZHANG N. Design of a nonlinear vibration absorber using three-to-one internal resonances [ J ]. Mech Syst Signal Pro- cessing,2014,42 (1/2) : 236 - 246.
  • 5LI L, LI Y H, LIU Q K, et al. Flap wise non-linear dynamics of wind turbine blades with both external and internal resonances [ J]. Int J Non-Linear Mech,2014,61 ( 1 ) : 1 - 14.
  • 6LUONGO A, D! EGIDIO A, PAOLONE A. On the proper form of the amplitude modulation equations for resonant systems [ J ]. Nonlinear Dyn,2002,27 (3) : 237 - 254.
  • 7REVEL G, ALONSO D M, MOIOLA J L. Numerical semi-global analysis of a 1 : 2 resonant Hopf-Hopf bifurcation [ J ]. Physica D-nonlinear phenomena,2012,247( 1 ) :40 -53.
  • 8徐兴磊,李红.压缩真空态的激发态下介观串并联RLC电路的量子涨落[J].郑州大学学报(理学版),2007,39(1):67-70. 被引量:10
  • 9方天申,董学义.LC串联电路非共振固有振荡与谐波共振的区别[J].信阳师范学院学报(自然科学版),2007,20(4):429-431. 被引量:1
  • 10CHUA L O, WU C W, HUANG A, et al. A universal circuit for studying and generating chaos-II :Strange attractors [ J ]. IEEE T Circuits Sys I, 1993, 40(10) : 745 -761.

二级参考文献51

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部