期刊文献+

引入极值非相邻连接的连接聚类方法

Link clustering method based on maxima and minima non-neighbor link similarity
下载PDF
导出
摘要 针对在连接相似度的计算过程中原始连接聚类(LC)方法并未考虑非相邻连接的相似关系,本文提出的极值非相邻连接相似度策略,弥补了原有连接相似度的不足。新的极值非相邻连接相似度(MLS)策略考虑了连接之间相似关系的邻居节点集合的最大、最小情况。在此基础上,结合EQ评估策略,给出了新的引入极值非相邻连接的连接聚类(MLC)方法。在3组测试数据集上的实验结果表明:本文MLC方法相比原始LC、经典重叠社区发现(CPM)方法和扩展的连接聚类ELC方法在多种评估指标上表现优异。 Traditional clustering methods can be applied to the research of overlapping community detection directly with link similarity.However,Link Clustering(LC)method does not consider the relationship between non-neighbor links in the calculation of link similarity.In this paper,two link similarity strategies are proposed based on the maxima and minima non-neighbor(MLS)in order to overcome the shortcomings of the original link clustering.The two link similarity strategies consider the minimum and maximum conditions of link similarity relationships.Then,a link clustering method is put forward based on MLS strategies(MLC)with EQ evaluation.Experimental results on three real-world networks show that the proposed MLC method achieves better performance than the original LC method,classical CPM method and Extended Link Clustering(ELC)method under several evaluation criteria.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第5期1616-1621,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61472159 61572227)
关键词 人工智能 连接聚类 连接相似度 重叠社区发现 相邻连接 非相邻连接 artificial intelligence link clustering link similarity overlapping community detection neighbor links non-neighbor links
  • 相关文献

参考文献15

  • 1Palla G,Derényi I,Farkas I,et al.Uncovering the overlapping community structure of complex networks in nature and society[J].Nature,2005,435(7043):814-818.
  • 2Evans T S,Lambiotte R.Line graphs,link partitions,and overlapping communities[J].Phys Rev E,2009,80:016105.
  • 3Ahn Y Y,Bagrow J P,Lehmann S.Link communities reveal multi-scale complexity in networks[J].Nature,2010,466(7307):761-764.
  • 4Kalinka A T.The generation,visualization,and analysis of link communities in arbitrary networks with the R package linkcomm[J].Bioinformatics,2011,27(14):2011-2012.
  • 5Xie J R,Kelley S,Szymanski B K.Overlapping community detection in networks:the state-of-theart and comparative study[J].ACM Comput Surv,2013,45(4):43.
  • 6Huang L,Wang G,Wang Y,et al.Link clustering with extended link similarity and EQ evaluation division[J].PloS One,2013,8(6):e66005.
  • 7Shi C,Cai Y,Fu D,et al.A link clustering based overlapping community detection algorithm[J].Data&Knowledge Engineering,2013,87:394-404.
  • 8Lim S,Ryu S,Kwon S,et al.LinkSCAN*:overlapping community detection using the link-space transformation[C]//2014IEEE 30th International Conference on Data Engineering,Chicago,IL,2014:292-303.
  • 9He D,Jin D,Baquero C,et al.Link community detection using generative model and nonnegative matrix factorization[J].PloS One,2014,9(1):e86899.
  • 10Shen Hua-wei,Cheng Xue-qi,Cai Kai,et al.Detect overlapping and hierarchical community structure in networks[J].Physica A:Statistical Mechanics and its Applications,2009,388(8):1706-1712.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部