期刊文献+

基于空间算子代数理论的多体系统逆动力学递推计算

Recursive computation of multi-body inverse dynamics using spatial operator algebra
原文传递
导出
摘要 空间算子代数理论是近几年发展起来的一种高效建模方法,应用空间算子代数方法可以对空间多体系统进行动力学建模、分析和仿真.首先通过引入6维矢量构建了单个刚体的空间矢量动力学方程,随后进一步建立了整个铰链体的逆动力学方程,并且通过将动力学方程投影到随动坐标系的方法进行了该逆动力学递推算法的软件实现.应用空间算子代数理论建立的逆动力学递推算法具有O(N)的计算量级.通过平面三连杆的典型算例的求解,与商业软件Recurdyn@的仿真结果进行对比,验证了算法及软件实现的正确性.仿真结果表明,通过空间算子代数理论建立的逆动力学递推算法简单、计算精度及效率均能够满足工程需求,可应用于多体系统动力学的运动控制和轨迹优化设计中. In recent years, spatial operator algebra becomes an efficient modeling method used in multi- body systems. Spatial operator algebra method is applied to spatial multibody system dynamics modeling, analysis and simulation. The dynamic equation of single rigid body with 6 dimension vector was introduced first, then the inverse dynamic equations of the hinge body were modeled and implemented by projection method. Recursive inverse dynamic algorithm using spatial operator algebra has time complexity of O (N) level. Plane three links system was implemented by spatial operator algebra method which was proved correct by compared with the commercial software Recurdyn~. The result shows that the recursive inverse dynamic algorithm has efficient formulation conversions for multi-body dynamical modeling. Its calculation accuracy and efficiency can meet the requirements of engineering. This algorithm can be used for motion control and trajectory optimization design.
作者 谭文 罗健 孙富春 Tan Wen Luo Jian Sun Fuchun(School of Information and Electrical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China)
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2016年第3期69-75,共7页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 国家自然科学基金重点资助项目(60835004) 湖南省自然科学基金资助项目(09JJ3117 14JJ3107 14JJ3108) 教育部重点项目(211118) 湖南省科技计划项目(2015JC3111 2013TZ2017 2013FJ3156 2013GK3090 B11125) 湖南科技大学研究生创新基金项目(S130022)
关键词 逆动力学算法 空间算子代数 递推计算 多体系统 inverse dynamic algorithm spatial operator algebra recursive computational muhibody system
  • 相关文献

参考文献13

  • 1Featherstone R. The calculation of robot dynamics using articulated-body inertias[J]. The International Journal of RoboticsResearch,1983,2( 1) : 13-30.
  • 2Rodriguez G,Jain A,Kreutz-Delgado K.A spatial operator algebra for manipulator modeling and control[J].The InternationalJournal of Robotics Research,1991,10( 4) : 371-381.
  • 3Rodriguez G.Kalman filtering,smoothing,and recursive robot arm forward and inverse dynamics[J].IEEE Transactions onRobotics and Automation,1987,3( 6) : 624-639.
  • 4Jain A,Rodriguez G.Recursive flexible multibody system dynamics using spatial operators[J].Journal of Guidance,Control,andDynamics,1992,15( 6) : 1453-1466.
  • 5Jain A.Unified formulation of dynamics for serial rigid multibody systems[J].Journal of Guidance,Control,and Dynamics,1991,14( 3) : 531-542.
  • 6Jain A,Rodriguez G. An analysis of the kinematics and dynamics of underactuated manipulators[J]. IEEE Transactions onRobotics and Automation,1993,9( 4) : 411-422.
  • 7Featherstone R.Rigid body dynamics algorithms[M].Berlin: Springer,2008.
  • 8方喜峰,吴洪涛,刘云平,陆宇平,汪通悦.基于空间算子代数理论计算多体系统动力学建模[J].机械工程学报,2009,45(1):228-234. 被引量:24
  • 9方喜峰,吴洪涛,陆宇平,刘云平,邵兵.基于空间算子代数理论多体系统动力学雅可比矩阵设计与实现[J].中国机械工程,2008,19(12):1429-1433. 被引量:6
  • 10孟占峰,韩潮.基于空间算子代数的航天器多体动力学递推实时仿真算法[J].航空学报,2007,28(B08):49-56. 被引量:9

二级参考文献47

  • 1陈炜,余跃庆,张绪平,苏丽颖.欠驱动柔性机器人动力学建模及仿真[J].中国机械工程,2006,17(9):931-936. 被引量:22
  • 2GUILLERMO R, ABHINANDAN J. A spatial operator algebra for manipulator modeling and control[J], International Journal of Robotics Research, 1991, 11 (8): 371-381.
  • 3GUILLERMO R, ABHINANDAN J. Spatial operator algebra for multibody system dynamics[J]. The Journal of the Astronautical Sciences, 1992, 40(1): 27-50.
  • 4GUILLERMO R. Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics[J]. IEEE Journal of Robotics and Automation, 1987, 3(6): 624-639.
  • 5ABHINANDAN J, GUILLERMO R. Diagonalized Lagrangian robot dynamics[J]. IEEE Transactionons on Robotics and Automation, 1995, 11(4): 571-584.
  • 6Jain A, Rodriguez G. Diagonalized lagrangian robot dynamics[J]. IEEE Transaction on Robotics and Automation, 1995,11(4):571~584
  • 7Bae D S, Haug E J. A recursive formulation for constrained mechanical systems dynamics : Part II. closed loop systems[J]. Mech Struct E Mach,1987~1988,15(4):481~506
  • 8Bryson A E Jr, Ho Y C. Applied optimal control[M]. Blaisdell Publishing Co,1969.531~542
  • 9Brandl H, Johanni R, Otter M. An algorithm for the simulation of multibody systems with kinematic loops[C]. In: World Congress on the T theory of Machines and Mechanisms(7th) (Seville,Spain),1987
  • 10Jain A, Rodriguez G. Recursive dynamics for flexible multibody systems using spatial operators[C]. In:JPL Publication 90-26,Jet Propulsion Laboratory, Pasadena,CA,1995

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部