期刊文献+

三维自由面流动模拟中GPU并行计算技术 被引量:2

Application of GPU acceleration techniques in 3D violent free surface flows
下载PDF
导出
摘要 MPS(Moving Particle Semi-implicit)法能够有效地处理溃坝、晃荡等自由面大变形流动问题。在三维MPS方法中,粒子数量的急剧增加会导致其计算效率的降低并限制其在大规模流动问题中的应用。基于自主开发的MPS求解器MLParticleSJTU,本文对求解过程中耗时最多的邻居粒子搜寻和泊松方程求解两个模块采用了GPU并行加速,详细探讨了CPU+GPU策略。以三维晃荡和三维溃坝这两种典型的自由面大变形流动为例,比较了CPU+GPU相对于MLParticle-SJTU串行求解时的加速情况,结果表明CPU+GPU在邻居粒子和泊松方程这两个模块中的加速比最高能达到十倍左右。此外,采用CPU+GPU并行能够较准确地模拟溃坝、晃荡等自由面大变形问题。 MPS( Moving Particle Semi-implicit) is very suitable to deal with free surfaces flows of large deformation such as dambreaking and sloshing flows. However,the computational efficiency of the MPS method becomes a bottle neck for large-scale engineering applications with the increase of the number of particles,especially for 3D flow problems. Based on our in-house solver MLParticle-SJTU,the present work applies GPU technique in searching for neighboring particles and solving pressure Poisson equation,which are two most time-consuming parts in the MPS. The acceleration performance is analyzed according to 3D sloshing and 3D dam breaking flows. The results show that a speedup up to 10 x can be achieved by CPU + GPU acceleration compared to that by only one CPU.
作者 李海州 唐振远 万德成 LI Haizhou TANG Zhenyuan WAN Decheng(State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China)
出处 《海洋工程》 CSCD 北大核心 2016年第5期20-29,39,共11页 The Ocean Engineering
基金 国家自然科学基金资助项目(51379125 51490675 11432009 51579145 11272120) 长江学者奖励计划(T2014099) 上海东方学者岗位跟踪计划(2013022) 工信部数值水池创新专项VIV/VIM项目(2016-23/09)
关键词 MLParticle-SJTU求解器 邻居粒子搜索 GPU并行技术 稀疏矩阵求解 溃坝 晃荡 MLParticle-SJTU solver neighbor list search GPU parallel computation sparse linear equation sloshing dam-breaking wave
  • 相关文献

参考文献7

二级参考文献89

  • 1崔岩,吴卫,龚凯,刘桦.二维矩形水槽晃荡过程的SPH方法模拟[J].水动力学研究与进展(A辑),2008,23(6):618-624. 被引量:20
  • 2LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977,82(12):1013-1024.
  • 3GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society (MNRAS), 1977, 181: 375-389.
  • 4MONAGHAN J J, KOCHARYAN A. SPH simulation of multi-phase flow[J]. Computer Physics Communica- tions, 1995, 87(1-2): 225-235.
  • 5MORRIS J. Analysis of smoothed particle hydro- dynamics with applications[D]. Monash University, Melbourne, Australia, 1996.
  • 6CHEN J K, BERAUN J E, CARNEY T C. A corrective smoothed particle method for boundary value problems in heat conduction[J]. International Journal for Nume- rical Methods in Engineering, 1999, 46(2): 231-252.
  • 7MORRIS J P, ZHU Y, FOX P J. Parallel simulations of pore-scale flow through porous media[J]. Computers and Geotechnics, 1999, 25(4): 227-246.
  • 8LIBERSKY L D, RANDLES P W, CARNEY T C, et al. Recent improvements in SPH modeling of hypervelo- city impact[J]. International Journal of Impact Engi- neering, 1997, 20(6-10): 525-532.
  • 9SWEGLE J W, ATTAWAY S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. Computational Mechanics, 1995, 17(3): 151-168.
  • 10LIU M B, LIU G R, LAM K Y, et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J]. Computational Mechanics, 2003, 30(2): 106-118.

共引文献58

同被引文献20

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部