期刊文献+

ZnS∶Er纳米晶的水热合成及其性能研究

Study on Hydrothermal Synthesis and Properties of Er-doped ZnS Nanocrystals
下载PDF
导出
摘要 该文以硫代乙酰胺为硫源,采用水热法合成了ZnS∶Er纳米晶。并用X线衍射(XRD)、透射电子显微镜(TEM)、X线光电子能谱仪(XPS)、荧光光谱仪对其物相、形貌、组成及光学性能进行了表征。结果表明,ZnS∶Er纳米晶为立方闪锌矿结构,粒径约为5nm。由XPS图谱可知,ZnS∶Er纳米晶中存在Zn、S、C、O、Er等元素。ZnS∶Er纳米晶荧光光谱中出现了2个主要发射峰,分别位于469nm和583nm处。两发射峰的发光强度随着pH的升高而增强且发光峰的位置存在微弱的蓝移,pH=12时,两发射峰的荧光强度最强;随着Er3+掺杂量的增加,469nm处发射峰的强度先增强后减弱,583nm处发射峰的强度随之减弱。 The ZnS:Er nanocrystals were synthesized by the hydrothermal method with thioacetamide as the sulfur sources.The phase,morphology,components and luminescent properties of the nanocrystals were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),transmission electron microscopy(TEM)and fluorescence spectrophotometer.The results show that ZnS∶Er nanocrystals have cubic zinc blende crystal structure with an average size of5nm.Zn、S、C、O and Er elements are found in the ZnS∶Er nanocrystals from XPS spectra.ZnS∶Er nanocrystals have two emissions peaks at 469 nm and 583 nm,the two emissions peaks become more intensive and shift towards blue side as the value of the pH increases,which is the strongest performance at pH=12.The intensity of the peak at 469 nm enhances as the Er-doped content enhances initially and weakens afterwards,but the intensity of the peak at 583 nm always weakens.
作者 余凤阁 黄金亮 李丽华 顾永军 李谦 YU Fengge HUANG Jinliang LI Lihua GU Yongjun LI Qian(School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471003, China)
出处 《压电与声光》 CAS CSCD 北大核心 2016年第5期791-794,共4页 Piezoelectrics & Acoustooptics
基金 河南科技大学2015年度高级别科研项目培育基金资助项目(2015GJB005) 河南省高等学校重点科研项目计划基金资助项目(15A430023)
关键词 ZnS∶Er纳米晶 硫代乙酰胺 水热法 碱性条件 立方闪锌矿结构 ZnS∶Er nanocrystals thioacetamide hydrothermal method alkaline condition cubic zinc blende crystal structure
  • 相关文献

参考文献2

二级参考文献28

  • 1周晓虹.再论中产阶级:理论、历史与类型学 兼及一种全球化的视野[J].社会,2005,25(4):1-24. 被引量:26
  • 2Yao B D,Chan Y F,Wang N.Formation of ZnO nanostructures by a simple way of thermal evaporation.[J].Appl.Phys.Lett.2002,81(4):757-759.
  • 3Li Y B,Bando Y,Sato T,et al.ZnO nanobelts grown on Si substrate.[J].Appl.Phys.Lett.2002,81(1):144-166.
  • 4Kong X Y,Wang Z L,Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes,nanosprings,and nanospirals.[J].Appl.Phys.Lett.2004,84(6):975-977.
  • 5Hu J Q,Ma X L,Shang N G,et al.Large-Scale Rapid Oxidation Synthesis of SnO2 Nanoribbons.[J].Phys.Chem.B 2002,106:3823-3826.
  • 6Sun S H,Meng G W,Zhang G X,et al.Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders.[J].Chem.Phys.Lett.2003,376:103-107.
  • 7Li Y B,Liu Y K,Lee C S,et al.Large-scale synthesis of Ga2O3 nanoribbons by a two-step gas flow control[J].Superlattices and Microstructures.2009,46:585-592.
  • 8Dai Z R,Pan Z W,Wang Z L.Gallium Oxide Nanoribbons and Nanosheets.[J].Phys.Chem.B 2002,106:902-904.
  • 9Liu Y K,Yang W G,Hou D D.Control synthesis of octahedral In2O3 crystals,belts,and nanowires,Superlattices and Microstructures.[J].Superlattices and Microstructures.2008,43:93-100.
  • 10Liu W F,Jia C,Jin C G,et al.Growth mechanism and photoluminescence of CdS nanobelts on Si sustrate.[J].Crystal Growth.2004,269:304-309.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部