期刊文献+

An Efficient Halogen-free Flame Retardant for Polyethylene:Piperazine-modified Ammonium Polyphosphates with Different Structures 被引量:5

An Efficient Halogen-free Flame Retardant for Polyethylene:Piperazine-modified Ammonium Polyphosphates with Different Structures
原文传递
导出
摘要 In this study, piperazine-modified ammonium polyphosphates(PA-APPs) with hierarchical structure were synthesized through ion exchange reaction. ^1H nuclear magnetic resonance(^1H-NMR), Fourier transform infrared spectra(FTIR), elemental analysis(EA), and inductively coupled plasma atomic emission spectroscopy(ICP-AES) confirmed that the PA-APPs with different structures were prepared successfully. Then these flame retardants were used alone as monocomponent intumescent flame retardant for low-density polyethylene(LDPE). Combustion tests demonstrated that the flameretardant efficiency of PA-APP containing about 7 wt% carbon(PA-APP_7) was significantly higher than that of the other PAAPPs with more or less carbon. The flame-retarded LDPE system with 30 wt% PA-APP_7 passed the UL-94 V-0 rating, and had the oxygen index(LOI) of 33.0%. Thermal analysis illustrated that the thermal decomposition behavior of PA-APP changed with incorporating different contents of PA. For all these PA-APPs, PA-APP_7 showed higher thermal stability than the other PA-APP flame retardants. All the experimental results proved that PA-APP_7 could reach the balance of an acid source, a blowing source, and a charring source as a mono-component intumescent flame retardant for LDPE. Further, it led to the formation of a compact intumescent char layer containing the structures of rich P―O―P, P―N―C, C=C, etc. during burning which in turn resulted in the excellent flame-retardant efficiency of PA-APP7. In this study, piperazine-modified ammonium polyphosphates(PA-APPs) with hierarchical structure were synthesized through ion exchange reaction. ^1H nuclear magnetic resonance(^1H-NMR), Fourier transform infrared spectra(FTIR), elemental analysis(EA), and inductively coupled plasma atomic emission spectroscopy(ICP-AES) confirmed that the PA-APPs with different structures were prepared successfully. Then these flame retardants were used alone as monocomponent intumescent flame retardant for low-density polyethylene(LDPE). Combustion tests demonstrated that the flameretardant efficiency of PA-APP containing about 7 wt% carbon(PA-APP_7) was significantly higher than that of the other PAAPPs with more or less carbon. The flame-retarded LDPE system with 30 wt% PA-APP_7 passed the UL-94 V-0 rating, and had the oxygen index(LOI) of 33.0%. Thermal analysis illustrated that the thermal decomposition behavior of PA-APP changed with incorporating different contents of PA. For all these PA-APPs, PA-APP_7 showed higher thermal stability than the other PA-APP flame retardants. All the experimental results proved that PA-APP_7 could reach the balance of an acid source, a blowing source, and a charring source as a mono-component intumescent flame retardant for LDPE. Further, it led to the formation of a compact intumescent char layer containing the structures of rich P―O―P, P―N―C, C=C, etc. during burning which in turn resulted in the excellent flame-retardant efficiency of PA-APP7.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第11期1339-1353,共15页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.51421061) the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT1026)
关键词 flame retardant hierarchical burning polyethylene illustrated passed decomposing combustion ammonium flame retardant hierarchical burning polyethylene illustrated passed decomposing combustion ammonium
  • 相关文献

同被引文献49

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部