摘要
Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil external properties. Taking into account the soil internal properties like geochemical weathering indices could increase the map unit's purity. However, the compatibility of these indices with Soil Taxonomic Classes has not been studied yet. This study has been performed in a hilly region with different soil types, vegetation and diverse topographic attributes to illustrate the spatial variability of soil weathering indices and their compatibility with Soil Taxonomic Classes. The grid sampling is at 100 m interval. Physico-chemical and total elemental analyses were performed on 184 and 56 soil samples respectively. Eight topographic attributes and 14 common soil development indices were determined. Principal components analysis(PCA) was done to identify the most important components. The results indicated that Morphological Index(MI) was the best index to show the degree ofsoil development in the studied region. Spatial distribution of Soil Taxonomic Classes showed relatively good compatibility with the first principal component(PC1), Vogt(V) and morphological indices. This study showed that using soil development indices with the conventional methods could be helpful tools in soil survey investigations.
Soil complexity and its multivariable nature restrict the precision of soil maps that are essential tools for soil sustainable management. Most methods developed for reducing impurities of soil map units focus on soil external properties. Taking into account the soil internal properties like geochemical weathering indices could increase the map unit's purity. However, the compatibility of these indices with Soil Taxonomic Classes has not been studied yet. This study has been performed in a hilly region with different soil types, vegetation and diverse topographic attributes to illustrate the spatial variability of soil weathering indices and their compatibility with Soil Taxonomic Classes. The grid sampling is at 100 m interval. Physico-chemical and total elemental analyses were performed on 184 and 56 soil samples respectively. Eight topographic attributes and 14 common soil development indices were determined. Principal components analysis(PCA) was done to identify the most important components. The results indicated that Morphological Index(MI) was the best index to show the degree ofsoil development in the studied region. Spatial distribution of Soil Taxonomic Classes showed relatively good compatibility with the first principal component(PC1), Vogt(V) and morphological indices. This study showed that using soil development indices with the conventional methods could be helpful tools in soil survey investigations.
基金
Center of Excellence"Improvement Soil Quality in order to Optimize the Plant Nutrition"of Soil Science department, University of Tehran and College of Agriculture and Natural Resources, University of Tehran for financial support of the study (Grant No. 7104017/6/19)