期刊文献+

A Description of Fixed Subgroups of Free Groups

A Description of Fixed Subgroups of Free Groups
原文传递
导出
摘要 Let F be a finitely generated free group. Martino and Ventura gave an explicit description for the fixed subgroups of automorphisms of F. The author generalizes their results to injective endomorphisms.
作者 Qiang ZHANG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2016年第5期713-718,共6页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(No.11201364)
关键词 subgroups Fixed finitely automorphism explicit trivial isomorphic invariant integers argument 自由群 子群 有限生成 同构 同态 内射
  • 相关文献

参考文献10

  • 1Bestvina, M. and Handel, M., Train tracks and automorphisms of free groups, Ann. of Math., 135, 1992, 1 51.
  • 2Cohen, M., Metzler, W. and Zimmermann, A., What does a basis of F[a, b] look like? Math. Ann., 257, 1981, 435-445.
  • 3Collins, D. and Turner, E., All automorphisms of free groups with maximal rank fixed subgroups, Math. Proc. Cambridge Philos. Soc., 119, 1996, 615-630.
  • 4Collins, D. and Turner, E., An automorphism of a free group of finite rank with maximal rank fixed point subgroup fixes a primitive element, J. Pure Appl. Algebra, 88, 1993, 43-49.
  • 5Imrich, W. and Turner, E., Endomorphisms of free groups and their fixed points, Math. Proc. Cambridge Philos. Soc., 105, 1989, 421-422.
  • 6Magnus, W., Kavrass, A. and Solitar, D., Combinatorial Group Theory, Wiley, New York, 1966.
  • 7Martino, A. and Ventura, E., A description of auto-fixed subgroups in a free group, Topology, 43, 2004, 1133-1164.
  • 8Martino, A. and Ventura, E., On automorphism fixed subgroups of a free group, J. Algebra, 230, 2000, 596-607.
  • 9Stallings, J., Graphical theory of automorphisms of free groups, Combinatorial Group Theory and Topol- ogy, Ann. of Math. Stud., Vol. 111, Princeton University Press, Princeton, N J, 1987.
  • 10Turner, E., Test words for automorphisms of free groups, Bull. London Math. Soc., 28, 1996, 255-263.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部