期刊文献+

基于改进的扩散平滑和RBM的高光谱图像分类 被引量:1

Feature extraction and classification of hyperspectral image based on improved diffusion smoothing and RBM
下载PDF
导出
摘要 为了改善传统分类方法在高光谱遥感图像去噪和特征提取方面的不足,提出了一种基于改进的扩散平滑算法和RBM的方法。该方法使用自适应扩散系数,对相应的区域进行不同程度的扩散平滑,实现了对高光谱遥感图像的快速去噪;然后利用多层限制玻尔兹曼机构建DBN网络,实现对高光谱遥感图像的分类。实验表明,与传统的分类方法和DBN相比,该方法在高光谱图像地物分类精度上有所改善。 In order to improve the shortcomings of traditional classification methods in hyperspectral remote sensing image denoising and feature extraction, a new method based on improved diffusion smoothing algorithm and RBM model is proposed. The method u- ses the adaptive diffusion coefficient to the high spectral image denoising. To the corresponding regions, different degree of diffu- sion smoothing is adopted to realize the fast denoising of hyperspectral remote sensing image. Then, restricted Boltzmann machine is used to build DBN network to classify hyperspectral remote sensing images. The experimental results show that, compared with the traditional classification method and DBN, the proposed method obviously improve the classification accuracy of the remote sensing image.
出处 《电视技术》 北大核心 2016年第10期22-27,32,共7页 Video Engineering
基金 国家自然科学基金项目(61362021) 广西自然科学基金项目(2013GXNSFDA019030 2013GXNSFAA019331 2014GXNSFDA118035) 广西科技开发项目(桂科攻1348020-6 桂科能1298025-7) 桂林电子科技大学研究生科研创新项目(YJCXS201531)
关键词 扩散平滑 限制玻尔兹曼机 高光谱 遥感 神经网络 diffusion smoothing restricted Bohzmann machine hyperspectral remote sensing neural network
  • 相关文献

参考文献12

  • 1GURRAM P. Algorithms for muhispectral and hyperspectral image analysis[ J ]. Journal of electrical & computer engi- neering ,2013 ( 2 ) : 11-16.
  • 2AHMAD M,LEE S,HAQ I U, et al. Hyperspectral remote sensing: dimensional reduction and end member extraction [ J ]. International journal of soft computing & engineering, 2012,2( 2 ) :25-29.
  • 3都业军,周肃,方吉南.人丁神经网络在遥感影像分类中的应用与对比研究[J].测绘科学,2015(增刊1):53-123.
  • 4HAYKIN S. Neural networks and learning machines [ M ]. 3rd ed. New Jersey : Pearson Education,2009.
  • 5谭琨,杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128. 被引量:108
  • 6NIU X, BAN Y F. A novel contextual classification algo- rithm for multitemporal polarimetric SAR data [ J]. IEEE geoscience and remote sensing letters ,2014,11 ( 3 ) :681--685.
  • 7吕启,窦勇,牛新,徐佳庆,夏飞.基于DBN模型的遥感图像分类[J].计算机研究与发展,2014,51(9):1911-1918. 被引量:72
  • 8HINTON G E,SALAKHUTDINOV R R. Reducing the di- mensionality of data with neural networks [ J ]. Science, 2006( 13 ) :504-507.
  • 9MIDHUN M E, NAIR S R,PRABHAKAR V T N,et al. Deep model for classification of hyperspectral image using restricted bohzmann machine [ C ]// ICONIAAC' 14. [ S. I. ] :IEEE,2014: 1-7.
  • 10张春霞,姬楠楠,王冠伟.受限波尔兹曼机[J].工程数学学报,2015,32(2):159-173. 被引量:105

二级参考文献75

  • 1张钧萍,张晔.基于多特征多分辨率融合的高光谱图像分类[J].红外与毫米波学报,2004,23(5):345-348. 被引量:8
  • 2叶世伟,史忠植.神经网络原理[M].北京:机械工业出版社,2006.
  • 3Lothar Hermes, Dieter Frieau, Jan Puzicha, et al. Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J] In: Proc. IGARSS 99,1:348-350.
  • 4Huang C, Davis L S. Townshend J R G. An assessment of support vector machines for land cover classification [J]. International Journal of Remote Sensing, 2002, 23 : 725-749.
  • 5Martin Brown, Hugh G Lewis, Steve R Gunn. Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing ,2000,38(5) :2346-2360.
  • 6Zhang J, Zhang Y, Zhou T. Classification of hyperspectral data using support vector machine [ C ]. In: IEEE International Conference on Image Processing, 2001:882-885.
  • 7Vapnik V N. Statistical Learning Theory[M]. New York: Wiley. 1998.
  • 8Kre el U. Pairwise Classification and Support Vector Machines [M]. In Advances in Kernel Methods: Support Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. Smola ( eds. ) , The MIT Press, Cambridge, MA, 1999 : 255-268.
  • 9Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks ,2002,13 (2) :415-425, 2002.
  • 10Boardman J W, Kruse F A. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains[C]. Nevada: In Proceeding, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, 1994 ,I-407-I-418.

共引文献280

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部