期刊文献+

Crop 3D--基于激光雷达技术的作物高通量三维表型测量平台 被引量:28

Crop 3D: a platform based on LiDAR for 3D high-throughput crop phenotyping
原文传递
导出
摘要 作物表型测量技术发展的滞后已成为当前育种领域的发展瓶颈,高通量的精确表型测量有助于加速育种进程.激光雷达是一种新兴的主动遥感技术,能够精确获取作物的空间形态数据,在高通量作物表型监测中有广阔应用前景.然而,目前我国基于激光雷达技术的作物表型监测仍存在较大空白.因此,本课题组自主研发了一套以激光雷达为主,集成高分辨率相机、热成像仪、高光谱成像仪等传感器的高通量作物测量平台—Crop3D.与传统作物表型测量技术相比,Crop 3D优势在于能够通量化同步地对作物各生长时期进行多源表型数据的获取并提取株高、株幅、叶长、叶宽、叶倾角和叶面积等参数,可为植物生物学和基因组学分析提供数据支持.本文重点对Crop 3D平台的整体规划设计、传感器集成、运行模式及平台获取的表型参数做了详细描述,并对其潜在应用领域做了简要探讨.本课题组认为,激光雷达与传统表型测量技术相结合的集成型平台有望成为未来作物表型参数获取的趋势所在. With the growth of population and the reduction of arable land, breeding has been considered as an effective way to solve the food crisis. As an important part in breeding, high-throughput phenotyping can accelerate the breeding process effectively. Light detection and ranging(LiDAR) is an active remote sensing technology that is capable of acquiring three-dimensional(3D) data accurately, and has a great potential application in crop phenotyping. Given that crop phenotyping based on LiDAR technology is not common in China, we developed a high-throughput crop phenotyping platform, named Crop 3D, which integrated LiDAR, high-resolution camera, thermal camera and hyperspectral imager. Compared with traditional crop phenotyping techniques, Crop 3D can acquire the multi-source phenotypic data in the whole crop growing period and extract plant height, plant width, leaf length, leaf width, leaf area, leaf inclination angle and other parameters for plant biology and genomics analysis. In this paper, we described the designs, functions and testing results of the Crop 3D platform. Then, the potential applications and future development of the platform in phenotyping were briefly discussed. We concluded that platforms integrating LiDAR and traditional remote sensing techniques might be the future trend of crop high-throughput phenotyping.
出处 《中国科学:生命科学》 CSCD 北大核心 2016年第10期1210-1221,共12页 Scientia Sinica(Vitae)
基金 中国科学院战略性先导科技专项(A类)(批准号:XDA08040107)资助
关键词 作物育种 表型参数 数据融合 激光雷达 高通量 集成平台 crop breeding phenotypic parameters data fusion LiDAR high-throughput integrated platform
  • 相关文献

参考文献51

  • 1Bruinsma J. The Resource Outlook to 2050: by how much do land, water and crop yields need to increase by 2050? FAO Expert Meeting oil How to Feed the World in 2050. Rome, Italy. 2009. 1-33.
  • 2Bongiovanni R, Lowenberg-DeBoer J. Precision agriculture and sustainability. Precis Agric. 2004, 5:359 387.
  • 3Peleman J D, vall der Voort J R. Breeding by design. Trends Plant Sci, 2003, 8:330-334.
  • 4万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462. 被引量:128
  • 5Pask A, Pietragalla J, Mullan D, et al. Physiological Breeding II: A Field Guide to Wheat Phenotyping. Mexico: CIMMYT, 2012. 10-61.
  • 6梁淑敏,杨锦忠.图像处理技术在玉米株型上的应用研究[J].玉米科学,2007,15(4):146-148. 被引量:12
  • 7徐歆恺,郭楠,葛庆平,郭新宇.计算机视觉技术在作物形态测量中的应用[J].计算机工程与设计,2006,27(7):1134-1136. 被引量:9
  • 8Houle D, Govindaraju D R, Omholt S. Phenomics: the next challenge. Nat Rev Genet, 2010, 11:855-866.
  • 9Furbank R T, Tester M. Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci, 2011, 16:635-64.
  • 10Li L, Zhang Q, Huang D. A review of imaging techniques for plant phenotyping. Sensors, 2014, 14:20078-20111.

二级参考文献273

共引文献395

同被引文献422

引证文献28

二级引证文献367

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部