期刊文献+

基于协同采样主动学习的恶意代码检测 被引量:1

Malware detection using active learning based on collaborative sampling
下载PDF
导出
摘要 研究了基于机器学习分类算法的恶意代码检测,考虑到目前主要采用传统分类方法对恶意代码进行分类识别,这些方法需要通过学习大量标记样本来获得精准的分类器模型,然而样本标记工作只有少数专家才能完成,导致标记样本往往不足,致使分类结果准确率不高,提出了一种基于协同采样的主动学习方法。运用这种学习方法,仅需少量标记样本即可有效识别出恶意代码。实验证明,相对于传统的恶意代码分类方法,该方法能够显著提升分类准确率和泛化性能。 The malware detection using classification algorithms based on machine learning was studied. In consideration of the fact that current malware recognition mainly uses traditional classification algorithms, thus leading to the application of machine learning models and low classification precision due to the unsufficiency of labelled samples, a new malware detection method using active learning based on collaborative sampling was proposed. The method can use less labelled samples to effectively recognize malware. The experiment showed that it had the higher classifica- tion precision and the better performance compared with traditional methods.
出处 《高技术通讯》 CAS CSCD 北大核心 2016年第5期458-463,共6页 Chinese High Technology Letters
基金 国家自然科学基金(61202067,61271275) 863计划(2012AA013001,2013AA013205,2013AA013204)资助项目
关键词 主动学习 支持向量机(SVM) 概率性神经网络(PNN) 协同采样 active learning, support vector machine (SVM), probabilistic neural network (PNN), collaborative sampling
  • 相关文献

参考文献2

二级参考文献17

  • 1Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool for interactive content-based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(5): 644-655.
  • 2Zhu X. Semi-supervised learning literature survey: [Technical Report], Computer Sciences, University of Wisconsin-Madison. 2008.3-41.
  • 3McCallum A, Nigam K. Employing EM in pool-based active learning for text classification. In: Proceedings of the 15th International Conference on Machine Learning, San Francisco, USA, 1998. 350-358.
  • 4Schohn G, Cohn D. Less is more: active leaming with support vector machines. In: Proceedings of the 7th International Conference on Machine Learning, San Francisco, USA, 2000. 839-846.
  • 5Zhou Z H, Chen K J, Jiang Y. Exploiting unlabeled data in content-based image retrieval. In: Proceedings of the 15th European Conference on Machine Learning, Pisa, Italy, 2004. 525-536.
  • 6Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM International Conference on Multimedia, Ottawa, Canada, 2001. 107-118.
  • 7Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
  • 8Burges J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 9Mitchell T. Generalization as search. Artificial Intelligence, 1982, 18(2): 203-226.
  • 10Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Machine Learning Research, 2000, 2:45-66.

共引文献5

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部