期刊文献+

基于子空间字典偶学习的高光谱图像分类

Subspace-based dictionary pair learning for hyperspectral image classification
下载PDF
导出
摘要 针对高光谱高分辨率带来巨大数据量和空间分辨率引起混合像元的问题,提出了基于子空间(subspace)的字典偶学习(DPL)算法,简称DPLsub算法。DPL算法是对字典学习的改进,它通过学习得到综合字典和分析字典,在模式识别中体现了高效性,而子空间投影的方法能更好地表征噪声和高度混合的像元。将光谱和空间特征融合的方法用于分类研究试验。实验数据是两幅高光谱影像,比较了子空间字典偶学习(DPLsub)模型和其他三种分类器即最小二乘支持向量机(LS-SVM)、稀疏多分类回归(SMLR)和字典学习(DL-OMP)的分类结果。实验结果显示,DPLsub算法无论在时间上还是精度上都优于其他算法,证明了这种子空间字典偶学习方法对高光谱图像分类的可行性与高效性。 In view of the problem of huge data amount from hyperspectra' s high resolution and the mixed pixels problem from the spatial resolution, a subspace-based dictionary pair learning (DPL) algorithm, abbreviated to DPLsub algorithm, was presented. The DPL algorithm is an improvement of the dictionary learning, which reflects the high efficiency in pattern recognition through learning a synthesis dictionary and an analysis dictionary, while the subspace projection method better characterizes noise and highly mixed pixels. The fusion of spectra and spatial char- acteristics was applied to the classification experiment, and two hyperspectral images were used as the experimental data to compare the classification result of the DPLsub model with that of the other three classifiers of least squares support vector machine ( LS-SVM), sparsemultinomial logistic regression (SMLR) and dictionary learning ( DL- OMP). The experimental results verifies the feasibility and effectiveness of the proposed DPLsub algorithm in classification of hyperspectral images, and show that it outperforms other current algorithms in time and accuracy.
出处 《高技术通讯》 CAS CSCD 北大核心 2016年第5期483-490,共8页 Chinese High Technology Letters
基金 国家自然科学基金(61273019 61473339) 河北省自然科学基金(F2013203368) 中国博士后科学基金面上项目(2014M561202) 河北省博士后专项项目(B2014010005) 河北省青年拔尖人才支持计划([2013]17)资助项目
关键词 高光谱图像分类 子空间投影 混合像元 字典偶学习(DPL) 多特征融合 hyperspectral image classification, subspace projection, mixed pixels, dictionary pair learning ( DPL), fusion features
  • 相关文献

参考文献17

  • 1苏红军,杜培军,盛业华.高光谱遥感数据光谱特征提取算法与分类研究[J].计算机应用研究,2008,25(2):390-394. 被引量:36
  • 2Liu F,Meerschaert M M,McGough R J,et al.Numerical methods for solving the multi-term time-fractional wave-diffusion equationsFractional Calculus and Applied Analysis,2013,16:9-25.
  • 3Yury L.Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equationJournal of Mathematical Analysis and Applications,2011,374:538-548.
  • 4于强,刘发旺.时间分数阶反应-扩散方程的隐式差分近似[J].厦门大学学报(自然科学版),2006,45(3):315-319. 被引量:20
  • 5Tigli O F.Optimum vibration absorber(tuned mass damper)design for linear damped systems subjected to random loadsJournal of Sound and Vibration,2012,331:3 035-3 050.
  • 6Jiang H,Liu F,Turner I,et al.Burrage,Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domainComputers and Mathematics with Applications,2012,64:3 377-3 388.
  • 7Cheng J,Nakagawa J,Yamamoto M,et al.Uniqueness in an inverse problem for a one-dimensional fractional diffusion equationInverse Problems,2009,25:115 002-115 017.
  • 8Fauvel M, Tarabalka Y, Benedktsson J A, et al. Ad- vances in spectral-spatial classification of hyperspectral- images. Proceedings of the IEEE, 2013,101 (3) :652-675.
  • 9赵春晖,乔蕾.基于改进的最小二乘支持向量机的高光谱遥感图像分类[J].应用科技,2008,35(1):44-47. 被引量:10
  • 10Li J, Huang X, Gamba P, et al. Muhiple feature learn- ing for hyperspectral image classification. IEEE Transac- tions on geoscience and remote sensing, 2015,53 ( 3 ) : 1592-1605.

二级参考文献32

  • 1卢旋珠,刘发旺.时间分数阶扩散-反应方程[J].高等学校计算数学学报,2005,27(3):267-273. 被引量:8
  • 2王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 3Wyss W.The fractional diffusion equation[J].Journal of Mathematical Physics,1986,27:2782-2785.
  • 4Schneider W R,Wyss W.Fractional diffusion and wave equations[J].Journal of Mathematical Physics,1989,30:134-144.
  • 5Liu F,Anh V,Turner I,et al.Time fractional advection-dispersion equation[J].Applied Mathematics and Computation,2003,13(1-2):233-246.
  • 6Huang F,Liu F.The time fractional diffusion and advection-dispersion equation[J].The ANZIAM Journal,2005,46(3):317-330.
  • 7Lin Ran,Liu Fawang.Analysis of Fractional-Order Numerical Method for the Fractiona1 Relaxation Equation[M/CD].Computational Mechanics,(R-362),Tsinghua University & Springer-Verlag,2004.
  • 8Diethelm Kai,Ford Neville J,Freed Alen D.Detailed error analysis for a fractional Adams method[J].Numerical Algorithms,2004,36(1):31-52.
  • 9Liu F,Anh V,Turner I.Numerical solution of the space fractional Fokker-Planck Equation[J].Journal of Computational and Applied Mathematics,2004,166:209-219.
  • 10Liu F,Anh V,Turner I,et al.Numerical simulation for solute transport in fractal porous media[J].The ANZIAM Journal,2004,45(E):461-473.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部