期刊文献+

地球系统空间观测:从科学卫星到月基平台 被引量:14

Earth system observation from space: From scientific satellite to Moonbased platform
原文传递
导出
摘要 五十多年来,全球性对地观测已形成强大的技术能力和系统体系,在不同应用领域发挥了重要作用。随着对陆地、大气、海洋研究的深入,地球系统科学和全球变化研究正在向空间对地观测技术提出新的重大战略性需求。本文描述了面向全球变化应对、发展全球变化系列科学卫星的方案;提出面向宏观地球科学现象探测、构建月基对地观测系统的设想;同时,作为宏观地球科学现象研究的一个方向,论述了利用地球科学卫星和月基对地观测技术开展全球变化"三极"对比研究的思路。 In the past 50 years, global Earth observation has formed strong technological abilities and comprehensive systems, and played a significant role in different fields. With in-depth research on land, atmosphere and oceans, a new strategic demand for Earth Observation from space is coming forth from Earth system science and global change research. In this paper, we have proposed a new series of satellites - scientific satellites for global change research, which includes the following six satellites: atmospheric carbon satellite, aerosol satellite, night-light satellite, forest biomass satellite, glacier satellite and ocean salinity satellite; and we have presented our new suggestion entitled of "Establishing a Moon-based Earth observation system", which focuses on the observation of large scale geoscientific phenomena for its several unique advantages. Meanwhile, we have introduced our idea of a "Earth observation for the three poles environment comparison re- search", which approaches to study global change with new Earth observation techniques including Moon-based platform and scientific satellites.
作者 郭华东
出处 《遥感学报》 EI CSCD 北大核心 2016年第5期716-723,共8页 NATIONAL REMOTE SENSING BULLETIN
基金 国家自然科学基金重大项目(编号:41590850)~~
关键词 地球系统科学 全球变化 科学卫星 月基对地观测 “三极”对比 Earth system science, global change, scientific satellite, Moon-based Earth observation, three poles comparison
  • 相关文献

参考文献5

二级参考文献21

  • 1张道卫,郭华东,刘广,等.2011.基于OpenGL日地月系统仿真技术研究综述.第二十四届全国空间探测学术交流会论文摘要集.
  • 2Bruno D, Hobbs S, Ottavianelli G. 2006. Geosynchronous synthetic aperture radar: Concept design, properties and possible applications. Acta Astronaut, 59:149-156.
  • 3Bruno D, Hobbs S. 2010. Radar imaging from geosynchronous orbit: Temporal decorrelation aspects. IEEE Trans Geosci Remote Sensing, 48: 2924-2929.
  • 4Carruthers G, Page T. 1972. Apollo 16 far-ultraviolet camera/spectrograph: Earth observations. Science, 177:788-791.
  • 5Curland J, Mcdonough R. 1991. Synthetic Aperture Radar Systems and Signal Processing. New York: John Wiley & Sons Inc.
  • 6Fornaro G, Franceschetti G, Lombardini F, et al. 2010. Potentials and limitations of Moon-borne SAR imaging. IEEE Trans Geosci Remote Sensing, 48:3009-3019.
  • 7Henderson F, Lewis A. 1998. Manual of Remote Sensing: Principles and Applications of Imaging Radar. 3rd ed. New York: John Wiley & Sons Inc.
  • 8Kiyo T, Jean P. 1983. Synthetic aperture radar imaging from an inclined geosynchronous orbit. IEEE Trans Geosci Remote Sensing, GE-21: 324-329.
  • 9Madsen S, Edelstein W, DiDomenico L, et al. 2001. A geosynchronous synthetic aperture radar: For tectonic mapping, disaster management and measurements of vegetation and soil moisture. IGARSS'01. 447-449.
  • 10Moccia A, Renga A. 2010. Synthetic aperture radar for Earth observation from a lunar base: Performance and potential applications. IEEE Trans Aero Elec Sys, 46:1034-1051.

共引文献22

同被引文献115

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部