摘要
轨迹规划是翼伞系统自主归航任务的核心。针对归航轨迹规划,建立相应数学模型,提出了一种基于改进量子遗传算法的翼伞系统归航轨迹最优规划方法。在该方法中,首先引入非均匀B样条曲线拟合控制律,将轨迹规划最优控制问题转化为B样条基函数控制顶点的参数优化问题;然后采用改进的量子遗传算法对轨迹规划中目标函数进行寻优,从而引导并实现翼伞系统归航轨迹规划。对实际工况中不同初始条件下的翼伞系统进行归航轨迹规划仿真实验,结果表明,本方法是翼伞系统归航轨迹规划的一种有效方法,优化得到的控制律和轨迹符合翼伞系统自主归航控制的特点。
Trajectory planning is the core task in the autonomous homing of a parafoil system. In this paper,we establish a mathematical model for homing trajectory planning,and present an optimal homing trajectory planning method for parafoil systems based on an improved quantum genetic algorithm. In this method,we first adopt a nonuniform B-spline curve to fit the control law,so as to transform the problem of the optimal control of trajectory planning into a parameter optimization problem of the control vertices of the B-spline basis function. Then,using the improved quantum genetic algorithm,we optimize the objective function,and plan the homing trajectory of the parafoil system. We conducted simulation experiments under different initial states in the real environment. The results show that the method is effective for homing trajectory planning,and the obtained optimized control laws and homing trajectories meet the homing control feature requirements of parafoil systems.
作者
陶金
孙青林
朱二琳
陈增强
贺应平
TAO Jin SUN Qinling ZHU Erlin CHEN Zengqiang HE Yingping(College of Computer and Control Engineering,Nankai University,Tianjin 300071, China AVIC Aerospace Life-Support Industries Ltd.,Xiangyang 441003,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2016年第9期1261-1268,共8页
Journal of Harbin Engineering University
基金
国家自然科学基金资助项目(61273138)
天津市重点基金资助项目(14JC2D5C39300)
关键词
量子遗传算法
翼伞系统
归航轨迹规划
最优设计
小生境协同进化
quantum genetic algorithm
parafoil system
homing trajectory planning
optimal design
coevolution of niche