期刊文献+

基于HJ-1A卫星数据的高寒草地氮素评估-以青海省贵南县及玛沁县高寒草地为例 被引量:6

Estimation of nitrogen content of alpine grassland in Maqin and Guinan Counties,Qinghai Province,using remote sensing
下载PDF
导出
摘要 基于HJ-1A HSI卫星遥感资料,结合2014年青海省玛沁县、贵南县研究区高寒草地野外实测数据,建立了高寒草地氮素含量的估测模型,并对模型进行了精度评价,筛选出最优反演模型,分析了研究区高寒草地氮素的空间分布。结果表明,1)高寒草地HSI的原始光谱反射率、一阶导数光谱反射率及去包络线光谱反射率与地面实测氮素含量有一定的相关性,特别是吸收特征波段1(750.95~791.95nm)和吸收特征波段3(889.03~921.30nm)与氮素含量具有显著的相关性;2)基于吸收特征波段1构建的波段深度指数BD767.99可以较好的估测研究区高寒草地氮素含量,利用此变量拟合的线性回归模型可以解释研究区高寒草地氮素含量变化的44%,模型估测精度可达81.6%;3)贵南研究区氮素含量的空间变异较大,整体而言,西北部和西南部地区氮素含量较高,东北部地区氮素含量较低;玛沁研究区氮素含量的空间变异较小,草地氮素含量水平整体较低。 Using data sourced from a hyper-spectrum imager (HSI) from an environmental mitigation satellite (HJ-1A) and ground observation during 2014 in Maqin and Guinan Counties, Qinghai Province, inversion models were established for estimating the nitrogen (N) content of alpine grassland. The optimal inversion model was selected and the spatial distribution map of grassland N was analyzed in the study area. The results showed that there was a correlation between N and the original spectral reflectance, the first-order differential spectral reflectance and the continuum removed spectral reflectance of the original hyper-spectral image, and significant correlations between grassland N content and absorption feature band one (750.95-791.95 nm) and absorption feature band three (889.03-921.3 nm) were also found. The band depth index BD767.99 was able to estimate N content with the greatest accuracy; the linear model was able to explain over 44% of the variation in N content. The spatial variation of N content in Guinan County was large; generally N content was higher in northwest and southwest than in the northeast. The spatial variation of grassland N content in Maqin County was low and grassland N content was also low.
出处 《草业学报》 CSCD 北大核心 2016年第10期11-20,共10页 Acta Prataculturae Sinica
基金 国家自然科学基金项目(31372367,41401472) 青海省科技支撑项目(2013-N-146-4)资助
关键词 高寒草地 牧草品质 遥感监测 估测模型 alpine rangeland forage nutrition monitoring hyperspectral remote sensing estimation model
  • 相关文献

参考文献3

二级参考文献24

  • 1王磊,白由路.基于光谱理论的作物营养诊断研究进展[J].植物营养与肥料学报,2006,12(6):902-912. 被引量:45
  • 2李象霖.数字图像处理[M].北京:中国科学技术大学,1992..
  • 3浦琦良 宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000..
  • 4Lelong C C D, Pinet P C, Poilve H. Hyperspectral Imaging and Stress Mapping in Agriculture :A Case Study on Wheat in Beauce (France) [J]. Remote Sensing of Environment, 1998,66:179-191.
  • 5Peterson D J, Spanner M A, Running S W, et al. Relationship of Thematic Mapper Simulator Data to Leaf Area Index of Temperate Coniferous Forests [J].Remote Sensing of Environment, 1987,22(3) :323-341.
  • 6Spanner M A, Pierce L L, Peterson D J, et al. Remote Sensing of Temperate Coniferons Forest Leaf Area Index, the Influence of Canopy Closure, Understory Vegetation Background Reflectance[J]. Int J Remote Sensing, 1990,11(I), 95-111.
  • 7Spanner M A, Pierce L L, Running S W, et al. The Seasonality of AVHRR Data of Temperate Coniferous : Relationship with Leaf Area Index[J].Remote Sensing of Environment,1990,33: 97-112.
  • 8Kruse F A,Lefkoff A B,Boardman J W.The spectral image processing system(SIPS)--Internactive visualization and analysis of imaging spectrometer data[J].Remote Sens Environ, 1993;44:145-163.
  • 9Stralde A H.The use of prior probabilities in Maximum likelihood classification of remotely sensed data[J].Remote Sells Environ, 1980;10:135-163.
  • 10国家气象局编.农业气象观测规范(上卷)[M].北京:气象出版社,1993..

共引文献92

同被引文献124

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部