期刊文献+

基于图像增强与边缘检测的弱特征目标轮廓检测算法 被引量:3

Target Contour Measurement Algorithm Based on Image Enhancement and Edge Detection
下载PDF
导出
摘要 为了解决当前目标轮廓检测算法在边缘特征微弱、背景复杂环境下的轮廓提取精度较低的不足,设计了基于图像增强与边缘检测的目标轮廓检测算法。首先,基于拉普拉斯离散公式与二维傅里叶变换公式,构造了联合图像增强算子;然后,基于二阶导数梯度特征,设计了目标边缘检测算子,实现对目标周长、面积等参数的测量。实验数据显示:与当前目标轮廓提取算法相比,面对不利于测量工作的恶劣环境时,所提算法具有更高的提取精度与稳定性。 In order to solve the deficiency of low contour extraction accuracy in weak edge character, complex background environment, this paper designes algorithm for measuring the parameters of tool based on image enhancement and edge detection First, based on the Laplace discrete formula and two-dimensional Fourier transform formula, the coupling of the two image enhancement operator is constructed. Then, is based on the characteristics of the second derivative gradient, tool edge detection operator is designed for the cutting tool parameters such as perimeter, area measurement. Experimental data shows that compared with the current tool parameters measurement technology, in the face of unfavorable to measurement of bad environment,this algorithm has higher measurement accuracy and stability.
作者 吴鹃
出处 《计算机与数字工程》 2016年第10期2057-2060,2077,共5页 Computer & Digital Engineering
关键词 目标轮廓检测 图像增强 边缘检测 拉普拉斯 傅里叶变换 梯度特征 target contour detection, image enhancement, edge detection, Laplasse, Fourier transform, gradient feature
  • 相关文献

参考文献3

二级参考文献17

  • 1关新平,赵立兴,唐英干.图像去噪混合滤波方法[J].中国图象图形学报(A辑),2005,10(3):332-337. 被引量:110
  • 2秦志远,吴冰,王艳,山海涛.图像平滑算法比较研究及改进策略[J].测绘学院学报,2005,22(2):103-106. 被引量:26
  • 3孙胜.回弹前筒体内径的确定[J].锻压机械,1996,31(3):27-28. 被引量:8
  • 4周猛,李钢.图像处理中一种高效消除噪声的算法研究[J].安徽大学学报(自然科学版),2006,30(2):26-29. 被引量:5
  • 5周述光,温渝昌,金启刚.风洞模型位移光学测量技术应用综述[J].试验流体力学,2009,23(2):94-99.
  • 6张征宇,喻波,罗川,等.2.4m跨声速风洞的模型位移视频测量精度研究[J].试验流体力学,2011,25(4):79-82.
  • 7Cremers D, Rousson M, Deriche R. A review of statistical ap- proaches to level set segmentation: integrating color, texture, motion and shape [J]. International Journal of Computer Vision, 2007, 72 (2): 195-215.
  • 8Rosenthal P, Molchanov V, Linsen L. A narrow band level set method for surface extraction from unstructured point-based volume data [C] // The 18th International Conference on Computer Graphics, Visualization and Computer Vision, 2010: 73-80.
  • 9Bresson X, Esedoglu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model [J]. Journal of Mathematical Imaging and Vision, 2007, 28 (2): 151-167.
  • 10LI C, XU C, GUI C, et al. Level set evolution without re-initialization: A new variational formulation [C] //IEEE Conference on Computer Vision and Pattern Recognition, 2005: 430-436.

共引文献21

同被引文献34

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部