期刊文献+

一种带变异算子的PSO算法 被引量:4

A PSO Algorithm with Mutation Operator
下载PDF
导出
摘要 论文在基本PSO算法基础上,引入了遗传算法的变异算子。通过变异算子的控制函数,将PSO算法的训练过程分为前期和后期。在算法训练的前期,变异率取较大的值,以选择较多的粒子进行变异操作,目的是增强种群内部粒子的多样性,使得PSO算法能够在解空间的较大范围内进行搜索,以避免算法过早陷入局部最优解;在训练的后期,变异率取较小的值,以选择较少的粒子进行变异操作,目的是减弱种群内部粒子的多样性,使得PSO算法能够在解空间的较小范围内进行搜索,以提高算法的收敛精度。仿真研究表明,论文的算法具有较高的收敛精度,并且解决局部极小问题也相当成功。 In this paper, the mutation operator, which is used in Genetic Algorithm, is introduced into the basical PSOalgorithm. By mutation operator control function, the training process of the PSO algorithm is divided into early phase andlate phase. In the early phase of the algorithm train, the mutation rate is larger, so the more particles are chosen to take themutation operation, in order to enhance the diversity of the population’s particles, and the PSO algorithm can hunt in a largesolution space to avoid being trapped in the local optimal solution too early. In the late phase of the algorithm train, the mutationrate is smaller, so the less particles are chosen to take the mutation operation, in order to attenuate the diversity of thepopulation’s particles, therefore the PSO algorithm can hunt in a smaller solution space to improve the convergence accuracyof the algorithm. Simulation results show that, the convergence precision of this algorithm is higher, and solution of the localminimum problem is quite well.
作者 余仁波 赵修平 孟凡磊 YU Renbo ZHAO Xiuping MENG Fanlei(Department of Airborne Vehicle Engineering, Naval Aeronautical and Astronautical University, Yantai 264001)
出处 《舰船电子工程》 2016年第10期26-29,共4页 Ship Electronic Engineering
关键词 PSO算法 遗传算法 变异算子 控制函数 局部极小值 PSO algorithm, genetic algorithm, mutation operator, control function, local minimum
  • 相关文献

参考文献3

二级参考文献31

  • 1向齐良,吴敏,侯奔,向婕.基于成分预测模型的矿石烧结配料专家优化方法[J].山东大学学报(工学版),2005,35(4):43-46. 被引量:6
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3王炜,陈畏林,贾斌,徐智慧,杨海林.基于线性规划和神经网络的优化烧结配料系统开发[J].烧结球团,2006,31(1):27-30. 被引量:18
  • 4吕学伟,白晨光,邱贵宝,欧阳奇,黄玉明.基于遗传算法的烧结配料综合优化研究[J].钢铁,2007,42(4):12-15. 被引量:20
  • 5Kennedy J, Eberhart R C. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Perth, 1995:1942-1948.
  • 6Kalyan Veeramachneni, Lisa O, Ganapathi K. Probabilistically driven particle swarms for optimization of multi valued discrete problems: Design an analysis [C]. Proc of IEEE Swarm Intelligence Symposium (SIS). Honolulu, 2007: 141-149.
  • 7Van den Bergh F. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.
  • 8Engelbrecht A P, Masiye B S, Pampara G. Niching ability of basic particle swarm optimization algorithms [C]. Proc of IEEE Swarm Intelligence Symposium (SIS). Pasadena, 2005: 397-400.
  • 9Paul S Andrews. An investigation into mutation operators for partiele swarm optimization [J]. IEEE Congress on Evolutionary Computation, Vaneouver, 2006, 16(21): 1044-1051.
  • 10Higashi N, Iba H. Particle swarm optimization with Gaussian mutation [C]. Proc of IEEE Swarm Intelligence Symposium(SIS), 2003 : 71-79.

共引文献33

同被引文献42

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部