期刊文献+

基于目标检测及高密度轨迹的动作识别 被引量:2

Action Recognition Based on Object Detection and Dense Trajectories
原文传递
导出
摘要 为了实现准确的动作识别效果,我们通常需要提取能够充分代表运动特征的信息。近年来,基于高密度轨迹的动作识别方法因为能够提供丰富的时空信息而受到研究者们的广泛关注。但高密度轨迹类的动作识别算法通常都要面临背景冗余信息干扰的问题,为了解决这一问题,本文在高密度轨迹的动作识别方法基础上引入了目标检测算法,通过可变形块模型方法检测运动主体位置后计算其周围的高密度轨迹,有效地排除了背景冗余信息的干扰。而目标检测算法通常要面临丢帧问题,为了应对这一情况,本文采用了词袋模型和支持向量机进行动作特征表述和分类,词袋模型根据大量数据词频构建特征描述符的工作原理,使得目标检测偶有丢帧的情况并不影响动作识别的最终效果,结合高密度轨迹算法后有效地提高了传统高密度轨迹算法的效率,也获得了更为准确的识别效果。本文算法在KTH,UCF YouTube和UCF Sports数据集上较当前算法都取得了更高的动作识别准确率,尤其在复杂背景数据集UCF YouTube和UCF Sports上识别准确率分别可达89.2%和90.2%。 For recognizing human actions in video sequences, it is necessary to extract sufficient information that can represent motion features. In recent years, researchers pay more attention on dense trajectories because of its rich spatio- temporal information. However, dense trajectories based action recognition algorithms are all faced with redundant background problem. To ~lve this problem, we involve object detection in dense trajectories algorithm, detect motion object location through deformable part-based model and calculate dense trajectories around the motion object, which suppresses redundant background effectively. However, object detection algorithms are usually faced with missing frames problem. To solve this problem, human actions are classified by the bag-of-words model and SVM approach. Bag-of- words model constructs feature descriptors with word frequency, which makes few frames missing in object detection not influence action recognition result. Involving object detection improves dense trajectories approach efficiency, which also improves action recognition accuracy. Our algorithm achieves superior results on the KTH, UCF YouTube and UCF Sports datasets compared to the state-of-the-art methods, especially outstanding 89. 2 % and 90. 2% accuracy on complex background dataset UCF YouTube and UCF Sports respectively.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期442-451,共10页 Journal of Fudan University:Natural Science
基金 教育部博士点基金(20120071110028)
关键词 目标检测 高密度轨迹 可变形块模型 动作识别 object detection dense trajectories deformable part based model action recognition
  • 相关文献

参考文献35

  • 1P()PPE R. A survey on vision-based human actionrecognition[J]. Image and Vision Computing,2010,28 (6): 976 990.
  • 2SADANAND S, CORSO .IJ. Action bank: A high-level representation of activity in video[C] ff 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA: IEEE Press, 2012: 1234-1241.
  • 3WEINLAND D, RONFARD R, BOYER E. A survey of vision-based methods for action representation, segmentation andrecognition[J]. Computer Vision and Imal4e Understanding, 2011,115(2) : 224-241.
  • 4AGGARWAL J K, CAI Q. Human motion analysis= A review[J]. Computer Vision and Image Understanding, 1999,73(3) : 428-440.
  • 5AGGARWAL J K, PARK S. Human motion= Modeling and recognition of actions and interaction[C]// Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. Thessaloniki, Greece= IEEE Press, 2004: 640-647.
  • 6MOESLUND T B, HILTON A, KRUGER V. A survey of advances in vision-based human motion capture andanalysis[J]. Computer Vision and Image Understanding,2006,104(2) : 90-126.
  • 7CHENG G, WAN Y, SAUDAGAR A N, et al. Advances in Human Action Recognition.. A Survey[J]. arXiv preprint arXiv: 1501. 05964, 2015.
  • 8RAMANATHAN M, YAU W Y, TEOH E K. Human action recognition with video data: Research and evaluationchallenges[J]. IEEE Transactions on Human-Machine Systems, 2014,44(5) : 650-663.
  • 9BORGES P V K, CONCI N, CAVALLARO A. Video-based human behavior understanding: A survey [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013,23 (11) : 1993-2008.
  • 10RAPTIS M, KOKKINOS I, SOATTO S. Discovering discriminative action parts from mid-level video representations[C] // 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, USA: IEEE Press, 2012: 1242-1249.

二级参考文献12

  • 1Ivan Laptev.On Space-Time Interest Points[J]. International Journal of Computer Vision . 2005 (2-3)
  • 2M. D. Rodriguez,J. Ahmed,M. Shah.Action MACH: A spatio-temporal maximum average correlation height filter for action recognition. IEEE Conference on Computer Vision and Pattern Recognition . 2008
  • 3Quoc V Le,Will Y Zou,Serena Y Yeung,et al.Learning hierarchical invariant spatio-temporal features for action recognition with independ-ent subspace analysis. IEEE Conference on Computer Vision and Pattern Recognition . 2011
  • 4Wang H,Klaser A,Schmid C,et al.Action recognition by dense trajectories. IEEE Conference on Computer Vision and Pat-tern Recognition . 2011
  • 5MA A,Yuen P,ZOU W,et al.Supervised spatio-temporal neighborhood topology learning for action recognition. IEEE Trans.on Circuits and Systems for Video Technology . 2013
  • 6LIU L,SHAO L,ZHEN X,et al.Learning discriminative key poses for action recognition. IEEE Trans.on Cybernetics . 2013
  • 7Xianbin Cao,Bo Ning,Pingkun Yan.Selecting Key Poses on Manifold for Pairwise Action Recognition. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS . 2012
  • 8Zhuolin Jiang,Zhe Lin,Larry S. Davis.Recognizing Human Actions by Learning and Matching Shape-Motion Prototype Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2012
  • 9Pedro F. Felzenszwalb,Ross B. Girshick,David McAllester.Object Detection with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2010
  • 10Yang Y,Saleemi I,Shah M.Discovering motion primitives for unsupervised grouping and one-shot learning of human actions,gestures,and expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2013

共引文献2

同被引文献21

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部