摘要
在临界Sobolev空间H^(1/2)(R^3)中,本文研究了三维不可压磁微极流体方程组的适定性.设(u_0,ω_0,b_0)是H^(1/2)(R^3)中的小初值,则三维不可压磁微极流体方程组存在唯一整体强解(u,ω,b)∈C([0,+∞);H^(1/2)(R^3))∩L^2((0,+∞);H^(3/2)(R^3))∩L^4((0,+∞);H^1(R^3));设大初值(u_0,ω_0,b_0)∈H^(1/2)(R^3),则存在一个正的时间T=T(u_0,ω_0,b_0)使得三维不可压磁微极流体方程组在[0,T]内存在唯一局部强解(u,ω,b)∈C([0,T];H^(1/2)(R^3))∩L^2((0,T];H^(3/2)(R^3))∩L^4((0,T];H^1(R^3)),这些改进了Yuan J的结果(Existence theorem and blow-up criterion of the strong solutions to the magnetomicropolar fluid equations,Math.Methods Appl.Sci.,31(2008),1113-1130).
In this paper, we study the well-posedness of the 3D incompressible magneto- micropolar fluid equations in the critical Sobolev space H1/2 (R3) . Suppose that (u0, w0, b0) ∈H1/2 (R3) is small enough, then the magneto-micropolar fluid equations exist a unique and global in time strong solution (u,w, b) ∈ C([0, +∞);H1/2 (R3)) L2((0, +∞); H3/2 (R3)) L4((0, +∞); H1 (R3)); For large initial data (u0o, w0, b0) ∈ H1/2 (R3), there exists a positive time T = T(u0, w0, b0) such that there exists a unique and local in time strong solution (u, w, b) ∈ C([0, T]; H1/2 (R3)) L2((0, T]; h3/2 (R3)) L4((0, T]; H1 (R3)) on [0, T], which improve the results given by Jia Yuan (Existence theorem and blow-up criterion of the strong solutions to the magneto-micropolar fluid equations, Math. Methods Appl. Sci., 31 (2008), 1113-1130).
出处
《应用数学学报》
CSCD
北大核心
2016年第5期709-718,共10页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金(11471103)资助项目