期刊文献+

基于OMP算法的极化敏感阵列多参数估计 被引量:4

Multi-Parameter Estimation for Polarization Sensitive Array Using Adaptive-OMP Algorithm
下载PDF
导出
摘要 基于压缩感知的DOA估计方法在小快拍数下性能优越,并且具有天然的解相干能力,但在极化敏感阵列中运用很少。基于极化敏感阵列研究一种改进的OMP算法,能够成功估计出空域和极化域参数。该算法首先将极化敏感阵列信号接收矩阵重新建模,随后采用所提的改进OMP算法得到空域到达角估计结果。然后将求解出来的空域到达角代入到根据模值约束条件构造出来的代价函数中,通过闭合式解得到极化参数估计,从而实现了自动配对的空域和极化域的参数估计。仿真结果表明,该方法无论信号相干与否都能够得到良好的估计结果,并且在非相干情况下,估计性能总体优于极化ESPRIT算法及模值约束MUSIC算法。 The DOA estimation algorithm based on compressive sensing has superior performance in small snapshot and the natural ability of decorrelation, but it is rarely used in the polarization sensitive array. In this paper, an improved OMP algorithm based on polarization sensitive array is studied to estimate the pa- rameters of the air domain and the polarization domain. First, this algorithm remodels the signal receiving matrix of the polarization sensitive array, followed by using the proposed improved OMP algorithm to obtain the estimation results of spatial arrival angle. Then, the polarization parameters are estimated via the closed solution to a cost function of the mold constructor constraint, in which the estimated spatial arrival angle is substituted. Simulation results show that the proposed method can obtain good results in both coherent and incoherent signals and the estimation performance in the case of incoherent signals is generally better than the polarization ESPRIT algorithm and the modulus constraint MUSIC algorithm.
出处 《雷达科学与技术》 北大核心 2016年第5期453-458,465,共7页 Radar Science and Technology
基金 国家自然科学基金(No.61371184 61301262)
关键词 极化敏感阵列 压缩感知 OMP算法 模值约束 polarization sensitive array compressive sensing OMP algorithm modulus constraint
  • 相关文献

参考文献12

  • 1DONOHO D L. Compressed Sensing[J]. IEEE Trans on Information Theory, 2006, 52(4) :1289-1306.
  • 2庄钊文.极化敏感阵列信号处理[M].北京:国防工业出版社,2006: 204-209.
  • 3SCHMIDT R O. Multiple Emitter Locatioh and Signal Parameter Estimation[J]. IEEE Trans on Antennas and Propagation, 1986, 34(3) :276-280.
  • 4LI Huiyong, ZHANG Yuanfang, XIE Julan. A Re- duced-Dimensional Music Algorithm with Modulus Constraint Based on Electromagnetic Vector Sensor Array[C]//Asia-Pacific Signal and Information Pro- cessing Association Annual Summit and Conference, Hong Kong: APSI PA, 2015 : 328-332.
  • 5张远芳,周正,李会勇.极化敏感L型阵模值约束的多参数联合估计[J].雷达科学与技术,2016,14(1):81-85. 被引量:2
  • 6OH D, LI Y, KHODJAEV J, et al. Joint Estimation of Direction of Departure and Direction of Arrival for Multiple-Input Multiple-Output Radar Based on Im- proved Joint ESPRIT Method[J]. IET Radar, Sonar and Navigation, 2015, 9(3):308-317.
  • 7MALIOUTOV D, CETIN M, WlLLSKY A. A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays[J]. IEEE Trans on Signal Processing, 2005, 53(8):3010-3022.
  • 8YIN J, CHEN T. Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors[J]. IEEE Trans on Signal Processing, 2011, 59(9) :4489-4493.
  • 9田野,孙晓颖,秦宇镝.基于两步加权L_1范数约束的高分辨率波达方向和功率估计[J].电子与信息学报,2014,36(7):1637-1641. 被引量:3
  • 10刘福来,彭泸,汪晋宽,杜瑞燕.基于加权L_1范数的CS-DOA算法[J].东北大学学报(自然科学版),2013,34(5):654-657. 被引量:5

二级参考文献35

  • 1刘福来,汪晋宽,杜瑞燕,于戈.DOA矩阵方法及其性能分析[J].东北大学学报(自然科学版),2006,27(11):1220-1223. 被引量:2
  • 2Schmidt R O. Multiple emitter location and signal parameter estimation [ J ]. IEEE Transactions on Antennas and Propa- gation, 1986,34 ( 3 ) :276 - 280.
  • 3Liu F L, Wang J K, Sun C Y, et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals [J ]. IEEE Transactions on Antennas and Propagation,2012,60 (4) :2052 - 2062.
  • 4Donoho D L. Compressed sensing [J].IEEE Transactions on Information Theory,2006,52 (4) : 1289 - 1306.
  • 5Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J].IEEE Transactions on Signal Processing ,2005,53 (8) :3010 -3022.
  • 6Hyder M M,Mahata K. Direction-of-arrival estimation using a mixed L2.0-norm approximation[ J]. 1EEE Transactions on Signal Processing ,2010,58 (9) :4646 - 4655.
  • 7Stoica P,Babu P, Li J. SPICE: a sparse covariance-based estimation method for array processing [ J ]. IEEE Transactions on Signal Processing ,2011,59 ( 2 ) :629 - 638.
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [ J ]. SlAM Review, 2001,43 (1) :129 -159.
  • 9Trop J A. Greed is good: algorithmic results for sparse approximation [ J ]. IEEE Transactions on Information Theory,2004,50 (10) :2231 - 2242.
  • 10Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted L1 minimization[ J]. Journal of Fourier Analysis and Applications,2008,14 ( 5 ) : 877 - 905.

共引文献10

同被引文献25

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部